1,931 research outputs found

    Civil tiltrotor missions and applications. Phase 2: The commercial passenger market

    Get PDF
    The commercial passenger market for the civil tiltrotor was examined in phase 2. A market responsive commercial tiltrotor was found to be technically feasible, and a significant worldwide market potential was found to exist for such an aircraft, especially for relieving congestion in urban area-to-urban area service and for providing cost effective hub airport feeder service. Potential technical obstacles of community noise, vertiport area navigation, surveillance, and control, and the pilot/aircraft interface were determined to be surmountable. Nontechnical obstacles relating to national commitment and leadership and development of ground and air infrastructure were determined to be more difficult to resolve; an innovative public/private partnership is suggested to allow coordinated development of an initial commercial tiltrotor network to relieve congestion in the crowded US Northeast corridor by the year 2000

    The nature of CuA in cytochrome c oxidase

    Get PDF
    The isolation and purification of yeast cytochrome c oxidase is described. Characterization of the purified protein indicates that it is spectroscopically identical with cytochrome c oxidase isolated from beef heart. Preparations of isotopically substituted yeast cytochrome c oxidase are obtained incorporating [1,3-15N2]histidine or [beta,beta- 2H2]cysteine. Electron paramagnetic resonance and electron nuclear double resonance spectra of the isotopically substituted proteins identify unambiguously at least 1 cysteine and 1 histidine as ligands to CuA and suggest that substantial spin density is delocalized onto a cysteine sulfur in the oxidized protein to render the site Cu(I)-S

    Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study

    Get PDF
    We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules in order to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers, and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by either of these models

    Superradiance Transition in Photosynthetic Light-Harvesting Complexes

    Full text link
    We investigate the role of long-lasting quantum coherence in the efficiency of energy transport at room temperature in Fenna-Matthews-Olson photosynthetic complexes. The excitation energy transfer due to the coupling of the light harvesting complex to the reaction center ("sink") is analyzed using an effective non-Hermitian Hamiltonian. We show that, as the coupling to the reaction center is varied, maximal efficiency in energy transport is achieved in the vicinity of the superradiance transition, characterized by a segregation of the imaginary parts of the eigenvalues of the effective non-Hermitian Hamiltonian. Our results demonstrate that the presence of the sink (which provides a quasi--continuum in the energy spectrum) is the dominant effect in the energy transfer which takes place even in absence of a thermal bath. This approach allows one to study the effects of finite temperature and the effects of any coupling scheme to the reaction center. Moreover, taking into account a realistic electric dipole interaction, we show that the optimal distance from the reaction center to the Fenna-Matthews-Olson system occurs at the superradiance transition, and we show that this is consistent with available experimental data.Comment: 9 page

    Role of quantum coherence in chromophoric energy transport

    Get PDF
    The role of quantum coherence and the environment in the dynamics of excitation energy transfer is not fully understood. In this work, we introduce the concept of dynamical contributions of various physical processes to the energy transfer efficiency. We develop two complementary approaches, based on a Green's function method and energy transfer susceptibilities, and quantify the importance of the Hamiltonian evolution, phonon-induced decoherence, and spatial relaxation pathways. We investigate the Fenna-Matthews-Olson protein complex, where we find a contribution of coherent dynamics of about 10% and of relaxation of 80%.Comment: 5 pages, 3 figures, included static disorder, correlated environmen

    How do we best synergise climate mitigation actions to co-benefit biodiversity?

    Get PDF
    Acknowledgements We thank Yuka Otsuki Estrada for help in designing and producing the table, and all other authors of the IPBES-IPCC report on the scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change (Pörtner et al., 2021) for cross-cutting discussions during preparation of this analysis. Although this paper is based on the report of the IPBES-IPCC co882 sponsored workshop, the views expressed here represent the individual views of the authors. We would also like to thank the scientific steering committee of the IPBES-IPCC co-sponsored workshop, review editors, the IPCC and IPBES Secretariat, especially Anne Larigauderie, and Technical Support Units. In memory of our friend and co-author, Bob Scholes, who sadly died during the preparation of this synthesis, and who will be sorely missed by all.Peer reviewedPostprin

    Exciton bimolecular annihilation dynamics in supramolecular nanostructures of conjugated oligomers

    Get PDF
    We present femtosecond transient absorption measurements on π\pi-conjugated supramolecular assemblies in a high pump fluence regime. Oligo(\emph{p}-phenylenevinylene) monofunctionalized with ureido-\emph{s}-triazine (MOPV) self-assembles into chiral stacks in dodecane solution below 75^{\circ}C at a concentration of 4×1044\times 10^{-4} M. We observe exciton bimolecular annihilation in MOPV stacks at high excitation fluence, indicated by the fluence-dependent decay of 111^1Bu_{u}-exciton spectral signatures, and by the sub-linear fluence dependence of time- and wavelength-integrated photoluminescence (PL) intensity. These two characteristics are much less pronounced in MOPV solution where the phase equilibrium is shifted significantly away from supramolecular assembly, slightly below the transition temperature. A mesoscopic rate-equation model is applied to extract the bimolecular annihilation rate constant from the excitation fluence dependence of transient absorption and PL signals. The results demonstrate that the bimolecular annihilation rate is very high with a square-root dependence in time. The exciton annihilation results from a combination of fast exciton diffusion and resonance energy transfer. The supramolecular nanostructures studied here have electronic properties that are intermediate between molecular aggregates and polymeric semiconductors

    Excitons in a Photosynthetic Light-Harvesting System: A Combined Molecular Dynamics/Quantum Chemistry and Polaron Model Study

    Get PDF
    The dynamics of pigment-pigment and pigment-protein interactions in light-harvesting complexes is studied with a novel approach which combines molecular dynamics (MD) simulations with quantum chemistry (QC) calculations. The MD simulations of an LH-II complex, solvated and embedded in a lipid bilayer at physiological conditions (with total system size of 87,055 atoms) revealed a pathway of a water molecule into the B800 binding site, as well as increased dimerization within the B850 BChl ring, as compared to the dimerization found for the crystal structure. The fluctuations of pigment (B850 BChl) excitation energies, as a function of time, were determined via ab initio QC calculations based on the geometries that emerged from the MD simulations. From the results of these calculations we constructed a time-dependent Hamiltonian of the B850 exciton system from which we determined the linear absorption spectrum. Finally, a polaron model is introduced to describe quantum mechanically both the excitonic and vibrational (phonon) degrees of freedom. The exciton-phonon coupling that enters into the polaron model, and the corresponding phonon spectral function are derived from the MD/QC simulations. It is demonstrated that, in the framework of the polaron model, the absorption spectrum of the B850 excitons can be calculated from the autocorrelation function of the excitation energies of individual BChls, which is readily available from the combined MD/QC simulations. The obtained result is in good agreement with the experimentally measured absorption spectrum.Comment: REVTeX3.1, 23 pages, 13 (EPS) figures included. A high quality PDF file of the paper is available at http://www.ks.uiuc.edu/Publications/Papers/PDF/DAMJ2001/DAMJ2001.pd

    Angular sensitivity of blowfly photoreceptors: intracellular measurements and wave-optical predictions

    Get PDF
    The angular sensitivity of blowfly photoreceptors was measured in detail at wavelengths λ = 355, 494 and 588 nm. The measured curves often showed numerous sidebands, indicating the importance of diffraction by the facet lens. The shape of the angular sensitivity profile is dependent on wavelength. The main peak of the angular sensitivities at the shorter wavelengths was flattened. This phenomenon as well as the overall shape of the main peak can be quantitatively described by a wave-optical theory using realistic values for the optical parameters of the lens-photoreceptor system. At a constant response level of 6 mV (almost dark adapted), the visual acuity of the peripheral cells R1-6 is at longer wavelengths mainly diffraction limited, while at shorter wavelengths the visual acuity is limited by the waveguide properties of the rhabdomere. Closure of the pupil narrows the angular sensitivity profile at the shorter wavelengths. This effect can be fully described by assuming that the intracellular pupil progressively absorbs light from the higher order modes. In light-adapted cells R1-6 the visual acuity is mainly diffraction limited at all wavelengths.

    AN EVENT STUDY OF THE DELISTING OF HOSPITALITY STOCKS IN THE UNITED STATES

    Get PDF
    Managers make important corporate strategic investment decisions such as mergers and acquisitions to improve the long-term competitiveness of their organizations; while at times they may be forced to manage for the short-term in order to satisfy the demands from the stock market.However, there is a lack of empirical research to examine the short- versus long-term view of management decision-making.This study analyses the mergers and acquisitions activities in the hospitality industry and particularly, investigates delisting behaviour of publicly traded hospitality firms and whether companies exhibit distinct patterns before delisting. Consolidation is prevalent in a maturing industry such as hospitality which currently faces a fiercely competitive global environment. The results of the study show that there is substantial difference between hospitality and non-hospitality stocks: not much information leakage in the delisting of hospitality stocks and a marked increase in institutional holdings with time but significant information leakage in non-hospitality stocks as reflected by positive and significant abnormal returns
    corecore