41 research outputs found

    Fast Machine Unlearning Without Retraining Through Selective Synaptic Dampening

    Full text link
    Machine unlearning, the ability for a machine learning model to forget, is becoming increasingly important to comply with data privacy regulations, as well as to remove harmful, manipulated, or outdated information. The key challenge lies in forgetting specific information while protecting model performance on the remaining data. While current state-of-the-art methods perform well, they typically require some level of retraining over the retained data, in order to protect or restore model performance. This adds computational overhead and mandates that the training data remain available and accessible, which may not be feasible. In contrast, other methods employ a retrain-free paradigm, however, these approaches are prohibitively computationally expensive and do not perform on par with their retrain-based counterparts. We present Selective Synaptic Dampening (SSD), a novel two-step, post hoc, retrain-free approach to machine unlearning which is fast, performant, and does not require long-term storage of the training data. First, SSD uses the Fisher information matrix of the training and forgetting data to select parameters that are disproportionately important to the forget set. Second, SSD induces forgetting by dampening these parameters proportional to their relative importance to the forget set with respect to the wider training data. We evaluate our method against several existing unlearning methods in a range of experiments using ResNet18 and Vision Transformer. Results show that the performance of SSD is competitive with retrain-based post hoc methods, demonstrating the viability of retrain-free post hoc unlearning approaches

    Identifying contributors to supply chain outcomes in a multi-echelon setting: a decentralised approach

    Full text link
    Organisations often struggle to identify the causes of change in metrics such as product quality and delivery duration. This task becomes increasingly challenging when the cause lies outside of company borders in multi-echelon supply chains that are only partially observable. Although traditional supply chain management has advocated for data sharing to gain better insights, this does not take place in practice due to data privacy concerns. We propose the use of explainable artificial intelligence for decentralised computing of estimated contributions to a metric of interest in a multi-stage production process. This approach mitigates the need to convince supply chain actors to share data, as all computations occur in a decentralised manner. Our method is empirically validated using data collected from a real multi-stage manufacturing process. The results demonstrate the effectiveness of our approach in detecting the source of quality variations compared to a centralised approach using Shapley additive explanations

    AgentChat: Multi-Agent Collaborative Logistics for Carbon Reduction

    Full text link
    Heavy Good Vehicles (HGVs) are the second largest source of greenhouse gas emissions in transportation, after cars and taxis. However, HGVs are inefficiently utilised, with more than one-third of their weight capacity not being used during travel. We, thus, in this paper address collaborative logistics, an effective pathway to enhance HGVs' utilisation and reduce carbon emissions. We investigate a multi-agent system approach to facilitate collaborative logistics, particularly carrier collaboration. We propose a simple yet effective multi-agent collaborative logistics (MACL) framework, representing key stakeholders as intelligent agents. Furthermore, we utilise the MACL framework in conjunction with a proposed system architecture to create an integrated collaborative logistics testbed. This testbed, consisting of a physical system and its digital replica, is a tailored cyber-physical system or digital twin for collaborative logistics. Through a demonstration, we show the utility of the testbed for studying collaborative logistics.Comment: This paper includes 12 pages, 14 figures, and has been submitted to IEEE for possible publicatio

    Unlocking Carbon Reduction Potential with Reinforcement Learning for the Three-Dimensional Loading Capacitated Vehicle Routing Problem

    Full text link
    Heavy goods vehicles are vital backbones of the supply chain delivery system but also contribute significantly to carbon emissions with only 60% loading efficiency in the United Kingdom. Collaborative vehicle routing has been proposed as a solution to increase efficiency, but challenges remain to make this a possibility. One key challenge is the efficient computation of viable solutions for co-loading and routing. Current operations research methods suffer from non-linear scaling with increasing problem size and are therefore bound to limited geographic areas to compute results in time for day-to-day operations. This only allows for local optima in routing and leaves global optimisation potential untouched. We develop a reinforcement learning model to solve the three-dimensional loading capacitated vehicle routing problem in approximately linear time. While this problem has been studied extensively in operations research, no publications on solving it with reinforcement learning exist. We demonstrate the favourable scaling of our reinforcement learning model and benchmark our routing performance against state-of-the-art methods. The model performs within an average gap of 3.83% to 8.10% compared to established methods. Our model not only represents a promising first step towards large-scale logistics optimisation with reinforcement learning but also lays the foundation for this research stream

    Implementation of Autonomous Supply Chains for Digital Twinning: a Multi-Agent Approach

    Full text link
    Trade disruptions, the pandemic, and the Ukraine war over the past years have adversely affected global supply chains, revealing their vulnerability. Autonomous supply chains are an emerging topic that has gained attention in industry and academia as a means of increasing their monitoring and robustness. While many theoretical frameworks exist, there is only sparse work to facilitate generalisable technical implementation. We address this gap by investigating multi-agent system approaches for implementing autonomous supply chains, presenting an autonomous economic agent-based technical framework. We illustrate this framework with a prototype, studied in a perishable food supply chain scenario, and discuss possible extensions.Comment: This paper includes 7 Pages, 4 Figures, and has been accepted by the IFAC World Congress 2023, 9 July - 14 July, 2023, Yokohama, Japan and will be published in IFAC-PapersOnLin

    Применение инструментов digital-маркетинга для продвижения продукции промышленного предприятия на примере ОАО «Манотомь»

    Get PDF
    Объектом исследования являются механизмы онлайн-продвижения в b2b сегменте. Предмет исследования – контекстная реклама как инструмент повышения целевых активностей потенциальных клиентов АО "Манотомь". Цель работы – разработка рекомендаций по продвижению продукции промышленного предприятия на примере ОАО "Манотомь". Выполнен анализ целевой аудитории и конкурентной позиции предприятия на рынке, анализ поисковых запросов потенциальных клиентов, анализ поисковой выдачи сайтов компаний-конкурентов и анализ посещаемости сайта АО "Манотомь, подготовлена и запушена тестовая рекламная кампания.The object of the research is the mechanisms of online promotion in the b2b segment. The subject of the research is contextual advertising as a tool for increasing the activities of potential clients of JSC "Manotom". The purpose of the work is to develop recommendations for promoting the products of an industrial enterprise on the example of OJSC "Manotom". The analysis of the target audience and the competitive position of the enterprise in the market, the analysis of the search queries of potential customers, the analysis of the search results of the sites of competing companies and the analysis of the traffic of the site of JSC "Manotom", prepared and launched a test advertising campaign

    The SARS-Coronavirus-Host Interactome: Identification of Cyclophilins as Target for Pan-Coronavirus Inhibitors

    Get PDF
    Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock

    CASP1 variants influence subcellular caspase-1 localization, pyroptosome formation, pro-inflammatory cell death and macrophage deformability

    Get PDF
    CASP1 variants result in reduced enzymatic activity of procaspase-1 and impaired IL-1β release. Despite this, affected individuals can develop systemic autoinflammatory disease. These seemingly contradictory observations have only partially been explained by increased NF-κB activation through prolonged interaction of variant procaspase-1 with RIP2. To identify further disease underlying pathomechanisms, we established an in vitro model using shRNA-directed knock-down of procaspase-1 followed by viral transduction of human monocytes (THP-1) with plasmids encoding for wild-type procaspase-1, disease-associated CASP1 variants (p.L265S, p.R240Q) or a missense mutation in the active center of procaspase-1 (p.C285A). THP1-derived macrophages carrying CASP1 variants exhibited mutation-specific molecular alterations. We here provide in vitro evidence for abnormal pyroptosome formation (p.C285A, p.240Q, p.L265S), impaired nuclear (pro)caspase-1 localization (p.L265S), reduced pro-inflammatory cell death (p.C285A) and changes in macrophage deformability that may contribute to disease pathophysiology of patients with CASP1 variants. This offers previously unknown molecular pathomechanisms in patients with systemic autoinflammatory disease

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    corecore