22 research outputs found

    NASA Experience with Large and Small UAS for Atmospheric Science

    Get PDF
    NASA's unmanned aerial systems (UAS) have been utilized in many science missions, going all the way back to 1993. Some of these missions have targeted imagery (fire, vegetation) and surface measurements, but many have been applied to atmospheric research, both physical (dynamics, weather, etc.) and chemical (e.g.,composition). NASA's largest UAS, the Global Hawk, has been used to study atmospheric composition at the tropical tropopause in the Airborne Tropical TRopopause EXperiment (ATTREX) mission, where the benefit of the UAS was long range and especially duration of up to 24 hours. Two Global Hawks were used in the Hurricane and Severe Storm Sentinal (HS3) mission to observe hurricane development. Again, long duration at altitude was the significant feature of the UAS. At the smallest scale, NASA has flown DragonEye UAS to measure volcanic gas emissions in both Costa Rica and Hawaii. The small DragonEye could sample gases in hazardous locations where manned aircraft could not fly. At mid-size, the NASA SIERRA UAS has flown imaging payloads and chemical remote sensing instruments in local and international settings. Theseexperiences provide direction for best use of UAS in atmospheric science, which will be presented

    Economic analysis of large-scale hydrogen storage for renewable utility applications.

    Get PDF
    The work reported here supports the efforts of the Market Transformation element of the DOE Fuel Cell Technology Program. The portfolio includes hydrogen technologies, as well as fuel cell technologies. The objective of this work is to model the use of bulk hydrogen storage, integrated with intermittent renewable energy production of hydrogen via electrolysis, used to generate grid-quality electricity. In addition the work determines cost-effective scale and design characteristics and explores potential attractive business models

    Characteristics and Technologies for Long- vs. Short-Term Energy Storage: A Study by the DOE Energy Storage Systems Program

    Get PDF
    This report describes the results of a study on stationary energy storage technologies for a range of applications that were categorized according to storage duration (discharge time): long or short. The study was funded by the U.S. Department of Energy through the Energy Storage Systems Program. A wide variety of storage technologies were analyzed according to performance capabilities, cost projects, and readiness to serve these many applications, and the advantages and disadvantages of each are presented

    Supporting NASA Science with High-Altitude Long-Endurance Aircraft

    Get PDF
    NASA Earth Science and Aeronautics researchers have been involved in development and use of High Altitude Long Endurance (HALE) unmanned aircraft systems (UAS) since the 1990's. The NASA Environmental Research Aircraft Sensor and Technology Program (ERAST) demonstrated the promise of HALE aircraft for providing observations while also proving the importance of triple-redundant avionics to improve system reliability for large unmanned aircraft. Early efforts to develop an operational HALE capability for earth observations languished for nearly two decades owing to insufficient solar panel efficiency, battery power density, and light-weight, yet strong, materials. During this time NASA researchers focused on using the Global Hawk to demonstrate the utility of providing diurnal measurements over severe storms (ie. HS3) and to track stratospheric water vapor transport (ATTREX). Recent significant commercial investments are now leading to the realization of a long-held goal of week- to month-long sustained observations and measurements from the stratosphere. In addition to a historical review of NASA use and interest in HALE aircraft, this paper will present current concepts for exploiting current and planned HALE aircraft capabilities including in situ characterization of atmospheric composition and dynamics as well as imagery collection. NASA researchers anticipate HALE will provide a useful means to test smallsat instruments and components. Observations from HALE-based instruments might also provide useful gap-filler observations to flagship satellite missions where the repeat time doesn't allow for measurements of quickly changing phenomenon. HALE will likely also provide measurements and communications relay to facilitate other aircraft in multi-aircraft campaigns. We will also report on progress towards a NASA-funded flight test planned for summer 2019 of a solar-electric vehicle designed to carry 7kg (15lbs) for 30 days at 20km altitude

    Enabling Earth Science Measurements with NASA UAS Capabilites

    Get PDF
    NASA's Airborne Science Program (ASP) maintains a fleet of manned and unmanned aircraft for Earth Science measurements and observations. The unmanned aircraft systems (UAS) range in size from very large (Global Hawks) to medium (SIERRA, Viking) and relatively small (DragonEye). UAS fly from very low (boundary layer) to very high altitude (stratosphere). NASA also supports science and applied science projects using UAS operated by outside companies or agencies. The aircraft and accompanying data and support systems have been used in numerous investigations. For example, Global Hawks have been used to study both hurricanes and atmospheric composition. SIERRA has been used to study ice, earthquake faults, and coral reefs. DragonEye is being used to measure volcanic emissions. As a foundation for NASA's UAS work, Altair and Ikkana not only flew wildfires in the Western US, but also provided major programs for the development of real-time data download and processing capabilities. In early 2014, an advanced L-band Synthetic Aperture Radar (SAR) also flew for the first time on Global Hawk, proving the utility of UAVSAR, which has been flying successfully on a manned aircraft. In this paper, we focus on two topics: 1) the results of a NASA program called UAS-Enabled Earth Science, in which three different science teams flew (at least) two different UAS to demonstrate platform performance, airspace integration, sensor performance, and applied science results from the data collected; 2) recent accomplishments with the high altitude, long-duration Global Hawks, especially measurements from several payload suites consisting of multiple instruments. The latest upgrades to data processing, communications, tracking and flight planning systems will also be described
    corecore