7 research outputs found

    Osteopontin Attenuates Secondary Neurodegeneration in the Thalamus after Experimental Stroke

    No full text
    Cortical cerebral ischemia elicits neuroinflammation as well as secondary neuronal degeneration in remote areas. Locally distinct and specific secondary neurodegeneration affecting thalamic nuclei connected to cortical areas highlights such processes. Osteopontin (OPN) is a cytokine-like glycoprotein that is excreted in high amounts after cerebral ischemia and exerts various immunomodulatory functions. We here examined putative protective effects of OPN in secondary thalamic degeneration. We subjected male Wistar rats to photothrombosis and subsequently injected OPN or placebo intracerebroventricularly. Immunohistochemical and fluorescence staining was used to detect the extent of neuronal degeneration and microglia activation. Ex vivo autoradiography with radiotracers available for human in vivo PET studies, i.e., cis-4-[F-18]Fluor-d-Proline (D-cis-[F-18]FPro), and [6-H-3]thymidine ([H-3]thymidine), confirmed degeneration and proliferation, respectively. We found secondary neurodegeneration in the thalamus characterized by microglial activation and neuronal loss. Neuronal loss was restricted to areas of microglial infiltration. Treatment with OPN significantly decreased neurodegeneration, inflammation and microglial proliferation. Microglia displayed morphological signs of activation without expressing markers of M1 or M2 polarization. D-cis-[F-18]FPro-uptake mirrored attenuated degeneration in OPN-treated animals. Notably, [H-3]thymidine and BrdU-staining revealed increased stem cell proliferation after treatment with OPN. The data suggest that OPN is able to ameliorate secondary neurodegeneration in thalamic nuclei. These effects can be visualized by radiotracers D-cis-[F-18]FPro and [H-3]thymidine, opening new vistas for translational studies

    Comparison of the Amyloid Load in the Brains of Two Transgenic Alzheimer's Disease Mouse Models Quantified by Florbetaben Positron Emission Tomography

    No full text
    Alzheimer's disease (AD) is characterized by formation of amyloid plaques and neurofibrillary tangles in the brain, which can be mimicked by transgenic mouse models. Here, we report on the characterization of amyloid load in the brains of two transgenic amyloidosis models using positron emission tomography (PET) with florbetaben (FBB), an F-18-labeled amyloid PET tracer routinely used in AD patients. Young, middle-aged, and old homozygous APP/PS1 mice (ARTE10), old hemizygous APPswe/PS1 Delta E9, and old wild-type control mice were subjected to FBB PET using a small animal PET/computed tomography scanner. After PET, brains were excised, and ex vivo autoradiography was performed. Plaque pathology was verified on brain sections with histological methods. Amyloid plaque load increased progressively with age in the cortex and hippocampus of ARTE10 mice, which could be detected with both in vivo FBB PET and ex vivo autoradiography. FBB retention showed significant differences to wild-type controls already at 9 months of age by both in vivo and ex vivo analyses. An excellent correlation between data derived from PET and autoradiography could be obtained (r(Pearson) = 0.947, p < 0.0001). Although amyloid load detected by FBB in the brains of old APPswe/PS1 Delta E9 mice was as low as values obtained with young ARTE10 mice, statistically significant discrimination to wild-type animals was reached (p < 0.01). In comparison to amyloid burden quantified by histological analysis, FBB retention correlated best with total plaque load and number of congophilic plaques in the brains of both mouse models. In conclusion, the homozygous ARTE10 mouse model showed superior properties over APPswe/PS1 Delta E9 mice for FBB small animal amyloid PET imaging. The absolute amount of congophilic dense-cored plaques seems to be the decisive factor for feasibility of amyloidosis models for amyloid PET analysis
    corecore