23 research outputs found
Remifentanil-propofol analgo-sedation shortens duration of ventilation and length of ICU stay compared to a conventional regimen: A centre randomised, cross-over, open-label study in the Netherlands
Objective: Compare duration of mechanical ventilation (MV), weaning time, ICU-LOS (ICU-LOS), efficacy and safety of remifentanil-based regimen with conventional sedation and analgesia. Design: Centre randomised, open-label, crossover, 'real-life' study. Setting: 15 Dutch hospitals. Patients: Adult medical and post-surgical ICU patients with anticipated short-term (2-3 days) MV. Interventions: Patient cohorts were randomised to remifentanil-based regimen (n = 96) with propofol as required, for a maximum of 10 days, or to conventional regimens (n = 109) of propofol, midazolam or lorazepam combined with fentanyl or morphine. Measurements and main results: Outcomes were weaning time, duration of MV, ICU-LOS, sedation- and analgesia levels, intensivist/ICU nurse satisfaction, adverse events, mean arterial pressure, heart rate. Median duration of ventilation (MV) was 5.1 days with conventional treatment versus 3.9 days with remifentanil (NS). The remifentanil-based regimen reduced median weaning time by 18.9 h (P = 0.0001). Median ICU-LOS was 7.9 days versus 5.9 days, respectively (NS). However, the treatment effects on duration of MV and ICU stay were time-dependent: patients were almost twice as likely to be extubated (P = 0.018) and discharged from the ICU (P = 0.05) on day 1-3. Propofol doses were reduced by 20% (P = 0.05). Remifentanil also improved sedation-agitation scores (P < 0.0001) and intensivist/ICU nurse satisfaction (P < 0.0001). All other outcomes were comparable. Conclusions: In patients with an expected short-term duration of MV, remifentanil significantly improves sedation and agitation levels and reduces weaning time. This contributes to a shorter duration of MV and ICU-LOS
Selection for female traits of high fertility affects male reproductive performance and alters the testicular transcriptional profile
BACKGROUND: Many genes important for reproductive performance are shared by both sexes. However, fecundity indices are primarily based on female parameters such as litter size. We examined a fertility mouse line (FL2), which has a considerably increased number of offspring and a total litter weight of 180% compared to a randomly bred control line (Ctrl) after more than 170 generations of breeding. In the present study, we investigated whether there might be a parallel evolution in males after more than 40 years of breeding in this outbred mouse model. RESULTS: Males of the fertility mouse line FL2 showed reduced sperm motility performance in a 5 h thermal stress experiment and reduced birth rate in the outbred mouse line. Transcriptional analysis of the FL2 testis showed the differential expression of genes associated with steroid metabolic processes (Cyp1b1, Cyp19a1, Hsd3b6, and Cyp21a1) and female fecundity (Gdf9), accompanied by 150% elevated serum progesterone levels in the FL2 males. Cluster analysis revealed the downregulation of genes of the kallikrein-related peptidases (KLK) cluster located on chromosome 7 in addition to alterations in gene expression with serine peptidase activity, e.g., angiotensinogen (Agt), of the renin-angiotensin system essential for ovulation. Although a majority of functional annotations map to female reproduction and ovulation, these genes are differentially expressed in FL2 testis. CONCLUSIONS: These data indicate that selection for primary female traits of increased litter size not only affects sperm characteristics but also manifests as transcriptional alterations of the male side likely with direct long-term consequences for the reproductive performance of the mouse line
Hierarchisch-sequentielle Dekomposition eines regionalen Systemmodells fuer den Raum Melle -HSDMEL- Abschlussbericht
SIGLEUuStB Koeln(38)-8206681 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
Additional file 2: of Selection for female traits of high fertility affects male reproductive performance and alters the testicular transcriptional profile
Distribution of probe cell intensity of unprocessed raw data (.CEL data) (a) Distribution of signal intensity values (.CHP data) after normalization by the Robust Multiarray Average with Signal Space Transformation algorithm (SST-RMA). (b) Consideration of both plots implies an overall successful hybridization experiment for all processed MTA 1.0 microarrays. (ZIP 63 kb
Additional file 1: of Selection for female traits of high fertility affects male reproductive performance and alters the testicular transcriptional profile
List of RT-qPCR primers used. (DOCX 52 kb
Genomic characterization of the world’s longest selection experiment in mouse reveals the complexity of polygenic traits
BACKGROUND:
Long-term selection experiments are a powerful tool to understand the genetic background of complex traits. The longest of such experiments has been conducted in the Research Institute for Farm Animal Biology (FBN), generating extreme mouse lines with increased fertility, body mass, protein mass and endurance. For >140 generations, these lines have been maintained alongside an unselected control line, representing a valuable resource for understanding the genetic basis of polygenic traits. However, their history and genomes have not been reported in a comprehensive manner yet. Therefore, the aim of this study is to provide a summary of the breeding history and phenotypic traits of these lines along with their genomic characteristics. We further attempt to decipher the effects of the observed line-specific patterns of genetic variation on each of the selected traits.
RESULTS:
Over the course of >140 generations, selection on the control line has given rise to two extremely fertile lines (>20 pups per litter each), two giant growth lines (one lean, one obese) and one long-distance running line. Whole genome sequencing analysis on 25 animals per line revealed line-specific patterns of genetic variation among lines, as well as high levels of homozygosity within lines. This high degree of distinctiveness results from the combined effects of long-term continuous selection, genetic drift, population bottleneck and isolation. Detection of line-specific patterns of genetic differentiation and structural variation revealed multiple candidate genes behind the improvement of the selected traits.
CONCLUSIONS:
The genomes of the Dummerstorf trait-selected mouse lines display distinct patterns of genomic variation harbouring multiple trait-relevant genes. Low levels of within-line genetic diversity indicate that many of the beneficial alleles have arrived to fixation alongside with neutral alleles. This study represents the first step in deciphering the influence of selection and neutral evolutionary forces on the genomes of these extreme mouse lines and depicts the genetic complexity underlying polygenic traits
Oekobilanzieller Vergleich der energetischen Verwertung von Kunststoffen mit Verfahren des rohstofflichen Recyclings fuer den Raum Mannheim / Ludwigshafen
Available from TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman