19 research outputs found

    Somatic LKB1 Mutations Promote Cervical Cancer Progression

    Get PDF
    Human Papilloma Virus (HPV) is the etiologic agent for cervical cancer. Yet, infection with HPV is not sufficient to cause cervical cancer, because most infected women develop transient epithelial dysplasias that spontaneously regress. Progression to invasive cancer has been attributed to diverse host factors such as immune or hormonal status, as no recurrent genetic alterations have been identified in cervical cancers. Thus, the pressing question as to the biological basis of cervical cancer progression has remained unresolved, hampering the development of novel therapies and prognostic tests. Here we show that at least 20% of cervical cancers harbor somatically-acquired mutations in the LKB1 tumor suppressor. Approximately one-half of tumors with mutations harbored single nucleotide substitutions or microdeletions identifiable by exon sequencing, while the other half harbored larger monoallelic or biallelic deletions detectable by multiplex ligation probe amplification (MLPA). Biallelic mutations were identified in most cervical cancer cell lines; HeLa, the first human cell line, harbors a homozygous 25 kb deletion that occurred in vivo. LKB1 inactivation in primary tumors was associated with accelerated disease progression. Median survival was only 13 months for patients with LKB1-deficient tumors, but >100 months for patients with LKB1-wild type tumors (P = 0.015, log rank test; hazard ratio = 0.25, 95% CI = 0.083 to 0.77). LKB1 is thus a major cervical tumor suppressor, demonstrating that acquired genetic alterations drive progression of HPV-induced dysplasias to invasive, lethal cancers. Furthermore, LKB1 status can be exploited clinically to predict disease recurrence

    Clinical implications of insulin-like growth factor 1 system in early-stage cervical cancer

    Get PDF
    This study was aimed to identify the expression and the correlation of insulin-like growth factor-1 (IGF-1) system and their prognostic impacts in cervical cancer. Seventy-two patients with early-stage cervical cancer were eligible. We obtained the serum levels of total IGF-1 and IGF binding protein-3 (IGFBP-3) by enzyme-linked immunosorbent assay and the expression of IGF-1 receptor (IGF-1R) in cancerous tissue by immuno-fluorescent (IF) stains. The 5-year recurrence-free and overall survival rates were significantly lower (P=0.003 and P=0.01, respectively) among patients with high-grade expression of tissue IGF-1R, compared with those with low-grade expression. After adjustment for other factors, preoperative serum total IGF-1 or IGFBP-3 levels failed to predict cancer death and recurrence. High-grade expression of IGF-1R and elevated preoperative squamous cell carcinoma antigen level were independent predictors of both death and recurrence, and combination of both factors could further help identify the subgroup of patients at higher death risk. The IF staining indicates the colocalisation of IGF-1 and IGF-1R in the cancerous tissues, whereas the IGF-1R expression is not correlated with circulating levels of IGF-1 or IGFBP-3. In early-stage cervical cancer, IGF-1 system may have a paracrine or autocrine function and the adverse impacts on prognosis by IGF-1R overexpression are implicated

    Osteosarcoma microenvironment: whole-slide imaging and optimized antigen detection overcome major limitations in immunohistochemical quantification.

    Get PDF
    BACKGROUND: In osteosarcoma survival rates could not be improved over the last 30 years. Novel biomarkers are warranted to allow risk stratification of patients for more individual treatment following initial diagnosis. Although previous studies of the tumor microenvironment have identified promising candidates, novel biomarkers have not been translated into routine histopathology. Substantial difficulties regarding immunohistochemical detection and quantification of antigens in decalcified and heterogeneous osteosarcoma might largely explain this translational short-coming. Furthermore, we hypothesized that conventional hot spot analysis is often not representative for the whole section when applied to heterogeneous tissues like osteosarcoma. We aimed to overcome these difficulties for major biomarkers of the immunovascular microenvironment. METHODS: Immunohistochemistry was systematically optimized for cell surface (CD31, CD8) and intracellular antigens (FOXP3) including evaluation of 200 different antigen retrieval conditions. Distribution patterns of these antigens were analyzed in formalin-fixed and paraffin-embedded samples from 120 high-grade central osteosarcoma biopsies and computer-assisted whole-slide analysis was compared with conventional quantification methods including hot spot analysis. RESULTS: More than 96% of osteosarcoma samples were positive for all antigens after optimization of immunohistochemistry. In contrast, standard immunohistochemistry retrieved false negative results in 35-65% of decalcified osteosarcoma specimens. Standard hot spot analysis was applicable for homogeneous distributed FOXP3+ and CD8+ cells. However, heterogeneous distribution of vascular CD31 did not allow reliable quantification with hot spot analysis in 85% of all samples. Computer-assisted whole-slide analysis of total CD31- immunoreactive area proved as the most appropriate quantification method. CONCLUSION: Standard staining and quantification procedures are not applicable in decalcified formalin-fixed and paraffin-embedded samples for major parameters of the immunovascular microenvironment in osteosarcoma. Whole-slide imaging and optimized antigen retrieval overcome these limitations

    T-cell responses to human papillomavirus type 16 among women with different grades of cervical neoplasia

    Get PDF
    Infection with high-risk genital human papillomavirus (HPV) types is a major risk factor for the development of cervical intraepithelial neoplasia (CIN) and invasive cervical carcinoma. The design of effective immunotherapies requires a greater understanding of how HPV-specific T-cell responses are involved in disease clearance and/or progression. Here, we have investigated T-cell responses to five HPV16 proteins (E6, E7, E4, L1 and L2) in women with CIN or cervical carcinoma directly ex vivo. T-cell responses were observed in the majority (78%) of samples. The frequency of CD4+ responders was far lower among those with progressive disease, indicating that the CD4+ T-cell response might be important in HPV clearance. CD8+ reactivity to E6 peptides was dominant across all disease grades, inferring that E6-specific CD8+ T cells are not vitally involved in disease clearance. T-cell responses were demonstrated in the majority (80%) of cervical cancer patients, but are obviously ineffective. Our study reveals significant differences in HPV16 immunity during progressive CIN. We conclude that the HPV-specific CD4+ T-cell response should be an important consideration in immunotherapy design, which should aim to target preinvasive disease

    Microbial Ecology of Lake Kivu

    Full text link
    peer reviewedWe review available data on archaea, bacteria and small eukaryotes in an attempt to provide a general picture of microbial diversity, abundances and microbe-driven processes in Lake Kivu surface and intermediate waters (ca. 0–100 m). The various water layers present contrasting physical and chemical properties and harbour very different microbial communities supported by the vertical redox structure. For instance, we found a clear vertical segregation of archaeal and bacterial assemblages between the oxic and the anoxic zone of the surface waters. The presence of specific bacterial (e.g. Green Sulfur Bacteria) and archaeal (e.g. ammonia-oxidising archaea) communities and the prevailing physico-chemical conditions point towards the redoxcline as the most active and metabolically diverse water layer. The archaeal assemblage in the surface and intermediate water column layers was mainly composed by the phylum Crenarchaeota , by the recently defined phylum Thaumarchaeota and by the phylum Euryarchaeota . In turn, the bacterial assemblage comprised mainly ubiquitous members of planktonic assemblages of freshwater environments (Actinobacteria, Bacteroidetes and Betaproteobacteria among others) and other less commonly retrieved phyla (e.g. Chlorobi, Clostridium and Deltaproteobacteria). The community of small eukaryotes (<5 µm) mainly comprised Stramenopiles , Alveolata , Cryptophyta , Chytridiomycota , Kinetoplastea and Choanoflagellida, by decreasing order of richness. The total prokaryotic abundance ranged between 0.5 × 10^6 and 2.0 × 10^6 cells mL−1 , with maxima located in the 0–20 m layer, while phycoerythrin-rich Synechococcus-like picocyanobacteria populations were comprised between 0.5 × 10^5 and 2.0 × 10^5 cells mL−1 in the same surface layer. Brown-coloured species of Green Sulfur Bacteria permanently developed at 11m depth in Kabuno Bay and sporadically in the anoxic waters of the lower mixolimnion of the main basin. The mean bacterial production was estimated to 336 mg C m−2 day−1 . First estimates of the re-assimilation by bacterioplankton of dissolved organic matter excreted by phytoplankton showed high values of dissolved primary production (ca. 50% of total production). The bacterial carbon demand can totally be fuelled by phytoplankton production. Overall, recent studies have revealed a high microbial diversity in Lake Kivu, and point towards a central role of microbes in the biogeochemical and ecological functioning of the surface layers, comprising the mixolimnion and the upper chemocline
    corecore