312 research outputs found
Positive Correlations in Tunneling through coupled Quantum Dots
Due to the Fermi-Dirac statistics of electrons the temporal correlations of
tunneling events in a double barrier setup are typically negative. Here, we
investigate the shot noise behavior of a system of two capacitively coupled
quantum dot states by means of a Master equation model. In an asymmetric setup
positive correlations in the tunneling current can arise due to the bunching of
tunneling events. The underlying mechanism will be discussed in detail in terms
of the current-current correlation function and the frequency-dependent Fano
factor.Comment: HCIS 13 in Moden
Time-delayed feedback in neurosystems
The influence of time delay in systems of two coupled excitable neurons is
studied in the framework of the FitzHugh-Nagumo model. Time-delay can occur in
the coupling between neurons or in a self-feedback loop. The stochastic
synchronization of instantaneously coupled neurons under the influence of white
noise can be deliberately controlled by local time-delayed feedback. By
appropriate choice of the delay time synchronization can be either enhanced or
suppressed. In delay-coupled neurons, antiphase oscillations can be induced for
sufficiently large delay and coupling strength. The additional application of
time-delayed self-feedback leads to complex scenarios of synchronized in-phase
or antiphase oscillations, bursting patterns, or amplitude death.Comment: 13 pages, 13 figure
Chimeras in Leaky Integrate-and-Fire Neural Networks: Effects of Reflecting Connectivities
The effects of nonlocal and reflecting connectivity are investigated in
coupled Leaky Integrate-and-Fire (LIF) elements, which assimilate the exchange
of electrical signals between neurons. Earlier investigations have demonstrated
that non-local and hierarchical network connectivity often induces complex
synchronization patterns and chimera states in systems of coupled oscillators.
In the LIF system we show that if the elements are non-locally linked with
positive diffusive coupling in a ring architecture the system splits into a
number of alternating domains. Half of these domains contain elements, whose
potential stays near the threshold, while they are interrupted by active
domains, where the elements perform regular LIF oscillations. The active
domains move around the ring with constant velocity, depending on the system
parameters. The idea of introducing reflecting non-local coupling in LIF
networks originates from signal exchange between neurons residing in the two
hemispheres in the brain. We show evidence that this connectivity induces novel
complex spatial and temporal structures: for relatively extensive ranges of
parameter values the system splits in two coexisting domains, one domain where
all elements stay near-threshold and one where incoherent states develop with
multileveled mean phase velocity distribution.Comment: 12 pages, 12 figure
ECoG-based short-range recurrent stimulation techniques to stabilize tissue at risk of progressive damage: Theory based on clinical observations
We introduce theoretical concepts based on chaos control to stabilize in acute stroke the tissue at risk of progressive damage by preventing adverse effects of waves of mass neuronal depolarization. Moreover, we present clinical electrocorticography (ECoG) recordings of relevant signals suggested for the feedback control. The recordings are performed in combination with novel subdural opto-electrode technology for simultaneous laser-Doppler flowmetry in patients with aneurysmal subarachnoid haemorrhage (aSAH). In aSAH patients waves of spreading depolarization (SD) have a high incidence and cause hypoxia in tissue at risk, and, importantly, the haemodynamic response is the inverse of that seen in healthy tissue. In previous clinical studies, clusters of prolonged SDs have been measured in aSAH patients in close proximity to structural brain damage as assessed by neuroimaging, and, in theoretical studies, a mechanism was presented, suggesting how a failure of internal feedback could be a putative mechanism of such SD cluster patterns in acute stroke. 

This failing internal feedback control is now suggested to be replaced by ECoG-based short-range recurrent functional stimulation that initiates the normal hyperperfusion haemodynamic response in a demand-controlled way and stabilizes the tissue at risk during the critical phase of SD passage. The suggested method has three key features: (i) it is short-range, i.e., in the order of the distance of the ECoG electrode strip, (ii) it is demand-controlled, and (iii) it uses no prior knowledge of the target state, in particular, it adapts to conditions in the healthy physiological range. On-demand type stimulation provides minimal invasive feedback as the control force is off when the target state is reached, i.e., the tissue at risk is without SD or it is back to the physiological range (out of risk). These last two features (ii-iii) are shared with classical methods of chaos control, where major progress was made in the last years with respect to extensions for spatio-temporal wave patterns. A detailed bifurcation analysis of the nonlinear model is presented, in particular, the SD cluster forming cortical state is suggested to be caused by a delay-induced saddle-node bifurcation.

Validation of the German Revised Addenbrooke's Cognitive Examination for Detecting Mild Cognitive Impairment, Mild Dementia in Alzheimer's Disease and Frontotemporal Lobar Degeneration
Background/Aims: The diagnostic accuracy of the German version of the revised Addenbrooke's Cognitive Examination (ACE-R) in identifying mild cognitive impairment (MCI), mild dementia in Alzheimer's disease (AD) and mild dementia in frontotemporal lobar degeneration (FTLD) in comparison with the conventional Mini Mental State Examination (MMSE) was assessed. Methods: The study encompasses 76 cognitively healthy elderly individuals, 75 patients with MCI, 56 with AD and 22 with FTLD. ACE-R and MMSE were validated against an expert diagnosis based on a comprehensive diagnostic procedure. Statistical analysis was performed using the receiver operating characteristic method and regression analyses. Results: The optimal cut-off score for the ACE-R for detecting MCI, AD, and FTLD was 86/87, 82/83 and 83/84, respectively. ACE-R was superior to MMSE only in the detection of patients with FTLD {[}area under the curve (AUC): 0.97 vs. 0.92], whilst the accuracy of the two instruments did not differ in identifying MCI and AD. The ratio of the scores of the memory ACE-R subtest to verbal fluency subtest contributed significantly to the discrimination between AD and FTLD (optimal cut-off score: 2.30/2.31, AUC: 0.77), whereas the MMSE and ACE-R total scores did not. Conclusion: The German ACE-R is superior to the most commonly employed MMSE in detecting mild dementia in FTLD and in the differential diagnosis between AD and FTLD. Thus it might serve as a valuable instrument as part of a comprehensive diagnostic workup in specialist centres/clinics contributing to the diagnosis and differential diagnosis of the cause of dementia. Copyright (C) 2010 S. Karger AG, Base
A new approach to long-term reconstruction of the solar irradiance leads to large historical solar forcing
The variable Sun is the most likely candidate for natural forcing of past
climate change on time scales of 50 to 1000 years. Evidence for this
understanding is that the terrestrial climate correlates positively with solar
activity. During the past 10,000 years, the Sun has experienced substantial
variations in activity and there have been numerous attempts to reconstruct
solar irradiance. While there is general agreement on how solar forcing varied
during the last several hundred years --- all reconstructions are proportional
to the solar activity --- there is scientific controversy on the magnitude of
solar forcing. We present a reconstruction of the Total and Spectral Solar
Irradiance covering 130 nm--10 m from 1610 to the present with annual
resolution and for the Holocene with 22-year resolution. We assume that the
minimum state of the quiet Sun in time corresponds to the observed quietest
area on the present Sun. Then we use available long-term proxies of the solar
activity, which are Be isotope concentrations in ice cores and 22-year
smoothed neutron monitor data, to interpolate between the present quiet Sun and
the minimum state of the quiet Sun. This determines the long-term trend in the
solar variability which is then superposed with the 11-year activity cycle
calculated from the sunspot number. The time-dependent solar spectral
irradiance from about 7000 BC to the present is then derived using a
state-of-the-art radiation code. We derive a total and spectral solar
irradiance that was substantially lower during the Maunder minimum than
observed today. The difference is remarkably larger than other estimations
published in the recent literature. The magnitude of the solar UV variability,
which indirectly affects climate is also found to exceed previous estimates. We
discuss in details the assumptions which leaded us to this conclusion.Comment: 9 pages, 5 figures, accepted for publication in
Astronomy&Astrophysic
- …