784 research outputs found
Causal inference using the algorithmic Markov condition
Inferring the causal structure that links n observables is usually based upon
detecting statistical dependences and choosing simple graphs that make the
joint measure Markovian. Here we argue why causal inference is also possible
when only single observations are present.
We develop a theory how to generate causal graphs explaining similarities
between single objects. To this end, we replace the notion of conditional
stochastic independence in the causal Markov condition with the vanishing of
conditional algorithmic mutual information and describe the corresponding
causal inference rules.
We explain why a consistent reformulation of causal inference in terms of
algorithmic complexity implies a new inference principle that takes into
account also the complexity of conditional probability densities, making it
possible to select among Markov equivalent causal graphs. This insight provides
a theoretical foundation of a heuristic principle proposed in earlier work.
We also discuss how to replace Kolmogorov complexity with decidable
complexity criteria. This can be seen as an algorithmic analog of replacing the
empirically undecidable question of statistical independence with practical
independence tests that are based on implicit or explicit assumptions on the
underlying distribution.Comment: 16 figure
Detecting confounding in multivariate linear models via spectral analysis
We study a model where one target variable Y is correlated with a vector
X:=(X_1,...,X_d) of predictor variables being potential causes of Y. We
describe a method that infers to what extent the statistical dependences
between X and Y are due to the influence of X on Y and to what extent due to a
hidden common cause (confounder) of X and Y. The method relies on concentration
of measure results for large dimensions d and an independence assumption
stating that, in the absence of confounding, the vector of regression
coefficients describing the influence of each X on Y typically has `generic
orientation' relative to the eigenspaces of the covariance matrix of X. For the
special case of a scalar confounder we show that confounding typically spoils
this generic orientation in a characteristic way that can be used to
quantitatively estimate the amount of confounding.Comment: 27 pages, 16 figure
Distinguishing Cause and Effect via Second Order Exponential Models
We propose a method to infer causal structures containing both discrete and
continuous variables. The idea is to select causal hypotheses for which the
conditional density of every variable, given its causes, becomes smooth. We
define a family of smooth densities and conditional densities by second order
exponential models, i.e., by maximizing conditional entropy subject to first
and second statistical moments. If some of the variables take only values in
proper subsets of R^n, these conditionals can induce different families of
joint distributions even for Markov-equivalent graphs.
We consider the case of one binary and one real-valued variable where the
method can distinguish between cause and effect. Using this example, we
describe that sometimes a causal hypothesis must be rejected because
P(effect|cause) and P(cause) share algorithmic information (which is untypical
if they are chosen independently). This way, our method is in the same spirit
as faithfulness-based causal inference because it also rejects non-generic
mutual adjustments among DAG-parameters.Comment: 36 pages, 8 figure
Modeling Information Propagation with Survival Theory
Networks provide a skeleton for the spread of contagions, like, information,
ideas, behaviors and diseases. Many times networks over which contagions
diffuse are unobserved and need to be inferred. Here we apply survival theory
to develop general additive and multiplicative risk models under which the
network inference problems can be solved efficiently by exploiting their
convexity. Our additive risk model generalizes several existing network
inference models. We show all these models are particular cases of our more
general model. Our multiplicative model allows for modeling scenarios in which
a node can either increase or decrease the risk of activation of another node,
in contrast with previous approaches, which consider only positive risk
increments. We evaluate the performance of our network inference algorithms on
large synthetic and real cascade datasets, and show that our models are able to
predict the length and duration of cascades in real data.Comment: To appear at ICML '1
Quantifying Information Overload in Social Media and its Impact on Social Contagions
Information overload has become an ubiquitous problem in modern society.
Social media users and microbloggers receive an endless flow of information,
often at a rate far higher than their cognitive abilities to process the
information. In this paper, we conduct a large scale quantitative study of
information overload and evaluate its impact on information dissemination in
the Twitter social media site. We model social media users as information
processing systems that queue incoming information according to some policies,
process information from the queue at some unknown rates and decide to forward
some of the incoming information to other users. We show how timestamped data
about tweets received and forwarded by users can be used to uncover key
properties of their queueing policies and estimate their information processing
rates and limits. Such an understanding of users' information processing
behaviors allows us to infer whether and to what extent users suffer from
information overload.
Our analysis provides empirical evidence of information processing limits for
social media users and the prevalence of information overloading. The most
active and popular social media users are often the ones that are overloaded.
Moreover, we find that the rate at which users receive information impacts
their processing behavior, including how they prioritize information from
different sources, how much information they process, and how quickly they
process information. Finally, the susceptibility of a social media user to
social contagions depends crucially on the rate at which she receives
information. An exposure to a piece of information, be it an idea, a convention
or a product, is much less effective for users that receive information at
higher rates, meaning they need more exposures to adopt a particular contagion.Comment: To appear at ICSWM '1
- …