16 research outputs found

    Analysis and robust decentralized control of power systems using FACTS devices

    Get PDF
    Today\u27s changing electric power systems create a growing need for flexible, reliable, fast responding, and accurate answers to questions of analysis, simulation, and design in the fields of electric power generation, transmission, distribution, and consumption. The Flexible Alternating Current Transmission Systems (FACTS) technology program utilizes power electronics components to replace conventional mechanical elements yielding increased flexibility in controlling the electric power system. Benefits include decreased response times and improved overall dynamic system behavior. FACTS devices allow the design of new control strategies, e.g., independent control of active and reactive power flows, which were not realizable a decade ago. However, FACTS components also create uncertainties. Besides the choice of the FACTS devices available, decisions concerning the location, rating, and operating scheme must be made. All of them require reliable numerical tools with appropriate stability, accuracy, and validity of results. This dissertation develops methods to model and control electric power systems including FACTS devices on the transmission level as well as the application of the software tools created to simulate, analyze, and improve the transient stability of electric power systems.;The Power Analysis Toolbox (PAT) developed is embedded in the MATLAB/Simulink environment. The toolbox provides numerous models for the different components of a power system and utilizes an advanced data structure that not only increases data organization and transparency but also simplifies the efforts necessary to incorporate new elements. The functions provided facilitate the computation of steady-state solutions and perform steady-state voltage stability analysis, nonlinear dynamic studies, as well as linearization around a chosen operating point.;Applying intelligent control design in the form of a fuzzy power system damping scheme applied to the Unified Power Flow Controller (UPFC) is proposed. Supplementary damping signals are generated based on local active power flow measurements guaranteeing feasibility. The effectiveness of this controller for longitudinal power systems under dynamic conditions is shown using a Two Area - Four Machine system. When large disturbances are applied, simulation results show that this design can enhance power system operation and damping characteristics. Investigations of meshed power systems such as the New England - New York power system are performed to gain further insight into adverse controller effects

    Controller HIL testing of real-time distributed frequency control for future power systems

    Get PDF
    With the evolution of power system components and structures driven mainly by renewable energy technologies, reliability of the network could be compromised with traditional control methodologies. Therefore, it is crucial to thoroughly validate and test future power system control concepts before deployment. In this paper, a Controller Hardware in the Loop (CHIL) simulation for a real-time distributed control algorithm concept developed within the ELECTRA IRP project is performed. CHIL allows exploration of many real-world issues such as noise, randomness of event timings, and hardware design issues that are often not present on a simulation-only system. Octave has been used as the programming language of the controller in order to facilitate the transition between software simulation and real-time control testing. The distributed controller achieved frequency restoration with a collaborative response between different controllers very fast after the unbalanced area is located

    Effectiveness of Superconducting Fault Current Limiting Transformers in Power Systems

    Get PDF
    Superconducting devices have emerged in many applications during the last few decades. They offer many advantages, including high efficiency, compact size, and superior performance. However, the main drawback of these devices is the high cost. An option to reduce the high cost and improve the cost-benefit ratio is to integrate two functions into one device. This paper presents the superconducting fault current limiting transformer (SFCLT) as a superior alternative to normal power transformers. The transformer has superconducting windings and also provides fault current limiting capability to reduce high fault currents. The SFCLT is tested in two power system models: A 7 bus wind farm-based model simulated in PSCAD and on the 80 bus simplified Australian power system model simulated in real-Time digital simulator. Various conditions were studied to investigate the effectiveness of the fault current limiting transformer

    Arcanobacterium phocae infection in mink (Neovison vison), seals (Phoca vitulina, Halichoerus grypus) and otters (Lutra lutra)

    Get PDF
    Abstract Background Infectious skin disorders are not uncommon in mink. Such disorders are important as they have a negative impact on animal health and welfare as well as on the quality and value of the fur. This study presents the isolation of Arcanobacterium phocae from mink with severe skin lesions and other pathological conditions, and from wild seals and otters. Results In 2015, A. phocae was isolated for the first time in Denmark from outbreaks of dermatitis in mink farms. The outbreaks affected at least 12 farms. Originating from these 12 farms, 23 animals cultured positive for A. phocae. The main clinical findings were necrotizing pododermatitis or dermatitis located to other body sites, such as the lumbar and cervical regions. A. phocae could be isolated from skin lesions and in nine animals also from liver, spleen and lung, indicating a systemic spread. The bacterium was also, for the first time in Denmark, detected in dead seals (n = 9) (lungs, throat or wounds) and otters (n = 2) (throat and foot). Conclusions An infectious skin disorder in mink associated with A. phocae has started to occur in Danish farmed mink. The origin of the infection has not been identified and it is still not clear what the pathogenesis or the port of entry for A. phocae infections are
    corecore