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Abstract

Analysis and Robust Decentralized Control of
Power Systems Using FACTS Devices

by

Karl E. Schoder
Doctor of Philosophy in Electrical Engineering

West Virginia University

Professor Ali Feliachi, Ph.D., Chair

Today’s changing electric power systems create a growing need for flexible, reliable, fast respond-
ing, and accurate answers to questions of analysis, simulation, and design in the fields of electric
power generation, transmission, distribution, and consumption. The Flexible Alternating Cur-
rent Transmission Systems (FACTS) technology program utilizes power electronics components to
replace conventional mechanical elements yielding increased flexibility in controlling the electric
power system. Benefits include decreased response times and improved overall dynamic system
behavior. FACTS devices allow the design of new control strategies, e.g., independent control of
active and reactive power flows, which were not realizable a decade ago. However, FACTS com-
ponents also create uncertainties. Besides the choice of the FACTS devices available, decisions
concerning the location, rating, and operating scheme must be made. All of them require reliable
numerical tools with appropriate stability, accuracy, and validity of results. This dissertation
develops methods to model and control electric power systems including FACTS devices on the
transmission level as well as the application of the software tools created to simulate, analyze,
and improve the transient stability of electric power systems.

The Power Analysis Toolbox (PAT) developed is embedded in the MATLAB/Simulink en-
vironment. The toolbox provides numerous models for the different components of a power
system and utilizes an advanced data structure that not only increases data organization and
transparency but also simplifies the efforts necessary to incorporate new elements. The functions
provided facilitate the computation of steady-state solutions and perform steady-state voltage
stability analysis, nonlinear dynamic studies, as well as linearization around a chosen operating
point.

Applying intelligent control design in the form of a fuzzy power system damping scheme
applied to the Unified Power Flow Controller (UPFC) is proposed. Supplementary damping
signals are generated based on local active power flow measurements guaranteeing feasibility.
The effectiveness of this controller for longitudinal power systems under dynamic conditions is
shown using a Two Area - Four Machine system. When large disturbances are applied, simulation
results show that this design can enhance power system operation and damping characteristics.
Investigations of meshed power systems such as the New England - New York power system are
performed to gain further insight into adverse controller effects.
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Chapter 1

Introduction

1.1 Motivation

The restructuring process of the electricity that is now taking place will affect all business aspects

of the power industry as it exists today from generation to transmission, distribution, and con-

sumption. Transmission circuits, in particular, will be stretched to their thermal limits exceeding

their existing stability limits due to the fact that building of new transmission lines is difficult, if

not impossible, from environmental and/or political aspects. With deregulation comes the need

for tighter control strategies to maintain the level of reliability that consumers not only have

taken for granted but expect even in the event of considerable structural changes, such as a loss

of a large generating unit or a transmission line, and loading conditions, due to the continuously

varying power consumption.

High-voltage direct current (HVDC) links have been in use for decades in order to allow

safe power transfer combined with improved dynamic performance. Schemes for long distance

power transfer as well as back-to-back schemes have been applied using thyristor technology

and current-source converters. New developments in the field of power electronic devices led

the Electric Power Research Institute1 (EPRI) to introduce a new technology program known

as Flexible Alternating Current Transmission Systems (FACTS) in the late 1980s [21]. FACTS

devices are based on high-voltage and high-speed power electronics devices. They increase the

controllability of power flows and voltages enhancing the utilization and stability of existing
1Electric Power Research Institute (EPRI), Company Vision/Mission: “EPRI is a nonprofit organization com-

mitted to providing science and technology-based solutions of indispensable value to our global energy customers.
To carry out our mission, we manage a far-reaching program of scientific research, technology development, and
product implementation.”, Palo Alto, California, http:\\www.epri.com.
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systems. FACTS devices have not only become common words in the power industry, but they

have started replacing many mechanical control devices as well. They are certainly playing an

increasing role in the operation and control of today’s power systems [28], [33].

The two main control modes to enhance power system operation are scheduling and sta-

bilization. Other important functions are monitoring, protection, and diagnostics. Scheduling

involves a rather slow adjustment of voltages and power flows to maintain a chosen state of the

system. Stabilization involves rapid response following contingencies allowing higher power trans-

fers while maintaining a desired level of security as well as continuous stabilizing actions during

normal operation to prevent spontaneous growth of oscillations [21].

The range of FACTS devices includes thyristor-based applications, e.g., Static VAR Compen-

sator (SVC) and Thyristor-Controlled Series Capacitor (TCSC), the conventional High-Voltage

Direct Current (HVDC) transmission systems, and Gate Turn-Off (GTO) based applications,

e.g., Static Synchronous Compensator (STATCOM), Static Synchronous Series Compensator

(SSSC), Static Phase Angle Regulator (SPAR), and Unified Power Flow Controller (UPFC). The

advantages of these solid-state semiconductor devices over mechanically-switched compensators

include:

• Improved operating and performance characteristics;

• Reduced equipment size and installation labor;

• Fewer concerns about equipment wear.

The relatively new GTO-based converter technology comes with the additional advantages of:

• No commutation failure when system voltage is decreased or distorted;

• Almost no harmonics allows filter-less converters;

• Reactive power can be generated or absorbed locally by the converter;

• Real and reactive power can be independently controlled;

• Reduced response time due to increased switching frequency.

SVC and TCSC devices vary their actual effective impedance to influence the power system in a

desired way. The solid-state synchronous voltage source (SVS) as introduced by L. Gyugyi [27]

is the operational basis for devices such as the STATCOM, SSSC, and UPFC. The SVS behaves
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like an ideal synchronous machine, i.e., generates fundamental frequency three-phase balanced

sinusoidal voltages of controllable magnitude and phase angle. It can internally generate both

inductive and capacitive reactive power. If coupled with an appropriate energy storage, e.g.,

capacitor, battery, etc., the SVS is able to exchange real power with the AC system. The SVS can

be implemented by the use of voltage-source converters (VSCs). Shunt compensation capabilities

of the STATCOM and the series control characteristics of the SSSC to independently control real

and reactive power have found applications in power system stability studies. As one of the most

complex FACTS devices the UPFC combines these advantages in a single device. The benefits

are a more flexible, reliable, and economical operation and loading of power systems. The UPFC

is the first device to simultaneously and independently control the parameters influencing power

flows. Until recently all four parameters that affect real and reactive power flows on the line, i.e.,

line impedance, voltage magnitudes at the terminals of the line, and power angle, were controlled

separately using either mechanical or other FACTS devices. However, the UPFC allows switching

from one control scheme to another in real-time.

A large number of control designs for FACTS devices have been presented in the literature.

These include numerous designs for linearized models using a specific operating condition, making

them prone to system changes as well as more advanced control schemes such as robust control,

self-tuning control, sliding mode control, and fuzzy logic control. These new techniques lead

to better, and in some cases guaranteed, dynamic performance than conventional fixed param-

eter controllers. These control schemes have been based on both local measurements as well

as measurements at different locations in the system resulting in decentralized and centralized

approaches.

Fuzzy logic and rule-based techniques were originally introduced as a means of both capturing

human expertise and dealing with uncertainty by Zadeh [100] in 1973. Since then, these concepts

have been applied with great success to processes and systems which are normally operated and

designed by experienced individuals who often achieve excellent results despite receiving imprecise

information [9]. Fuzzy control design is attractive because it does not require a mathematical

model of the system under study. It can cover a wider range of operating conditions and yet it is

simple enough to be implemented in real-world applications. These advantages make it an ideal

candidate for the design of controls for FACTS devices and will be explored in detail later.

An indispensable part of applying FACTS devices is the availability of a good simulation

tool for a detailed system study. Many operating conditions can only be investigated by means
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of simulation. Therefore, confidence in the power system model and its controls is crucial [21].

Control strategies have to be designed and tested for robustness in applying such simulation tools.

Advances in simulation environments and their capabilities allow detailed studies of the highly

nonlinear dynamics of power systems. The MATLAB/Simulink2 simulation software gives the

engineer the possibility of advanced vectorized computations as well as a block-oriented simulation

environment. Therefore, the conditions for performing steady-state analysis, including not only

load flow calculations and voltage-stability analysis but also fast dynamic stability analysis are

given. MATLAB’s capability can be expanded through script-files to perform computations in

a routine manner, and Simulink allows the extension of its libraries through self-created blocks.

Also, the steadily growing number of add-on products in the form of toolboxes creates an ideal

environment for electric power system modeling, analysis, and design.

The progress made and ideas mentioned in the areas above motivated this dissertation: To

combine building a suitable simulation environment for power systems and modern control tech-

niques. This environment should include FACTS devices in load flow computations, be applicable

to perform dynamic stability analysis, and allow the application of advanced control design tech-

niques to improve power system performance.

1.2 Overview

This dissertation consists of the following chapters:

• Chapter 1: Introduction

The introduction continues with an overview of power system dynamics (section 1.3).

• Chapter 2: Literature survey and related work

This chapter presents a survey concerning related work on modeling and simulation environ-

ments (section 2.1), FACTS devices (section 2.2), damping control (section 2.3), and fuzzy

control (section 2.4). It is concluded by the objectives and contribution of this dissertation

(section 2.5).

• Chapter 3: Power Analysis Toolbox

The Power Analysis Toolbox (PAT) is presented in the third chapter. An overview (section

3.1), the conceptual design (section 3.2), the implementation (section 3.3), and included
2MATLAB and Simulink are products of The Mathworks, Inc., http:\\www.mathworks.com.
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FACTS devices (section 3.4) are given in detail. A small example to introduce the use of

PAT as a tool is provided in section 3.3.6.

• Chapter 4: Transient stability enhancement using FACTS devices

The proposed fuzzy damping scheme and its application to the UPFC is discussed in this

chapter. An introduction to the topic is given in section 4.1. This is followed by the UPFC

as an actuator (section 4.2), fundamentals of fuzzy control (section 4.3), damping schemes

for excitation systems and FACTS devices (section 4.4), signal conditioning (section 4.5),

and the resulting fuzzy damping control (section 4.6). A discussion of the fuzzy damping

schemes and comparison with another damping control design is given in section 4.7.

• Chapter 5: Power system case studies

In this chapter case studies using the Two area - Four machine power system (section 5.1),

a meshed power system example (section 5.2), and the New York - New England system

(section 5.3) are presented to validate the suggested fuzzy damping scheme and to examine

effects in highly interconnected power systems.

• Chapter 6: Summary and conclusions

This chapter summarizes the benefits of the developed PAT and the enhancements achieved

by designing damping controls using the proposed fuzzy scheme, lists research work already

done or in progress that is based on parts of this dissertation (section 6.1), and gives

suggestions for future work (section 6.2).

A list of publications as a result of this research is given in appendix A.

1.3 Power system dynamics

Stability or instability of power systems can be classified due to the nature of the resulting

problem: loss of synchronism and voltage collapse [46]. These two categories are also known as

angle and voltage instability. Concentrating on angle stability, a further distinction can be made:

Small-signal (or small-disturbance) stability and the transient stability problem. Small-signal

disturbances occur continually because of small variations in load demands and power generation.

These changes are considered to be small enough to base the analysis on the linearized power

system. Oscillations of concern due to small disturbances are:
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• Local modes or machine-system modes - swinging of machines at a power station (or small

part of the power system) against the rest of the system. An oscillation is also classified as

a local mode if it is strongly controllable in only one area and also strongly observable in

the same area [98].

• Interarea modes - different parts of the system swinging against each other. Such a mode

might be strongly observable and weakly controllable in one area, but strongly controllable

and weakly observable in another area, or strongly controllable in different areas [98].

• Control modes - generator oscillations due to power system controllers.

• Torsional modes - mechanical oscillations of turbine-generator shaft systems caused by

interactions with other control systems.

The main concern of this research is the transient stability of electric power systems. As defined

in [46] the term transient stability refers to

“... the ability of the power system to maintain synchronism when subject to a severe
transient disturbance such as a fault on transmission facilities, loss of generation, or
loss of a large load. The system response to such disturbances involves large excursions
of generator rotor angles, power flows, bus voltages, and other system variables.”

If the resulting angular separation between the synchronous machines remains within certain

bounds, the system maintains synchronism. Otherwise the system is said to lose synchronism

and is classified as transiently unstable. The power system stability itself is highly influenced by

its nonlinearity. A period limited to 5 to 15 seconds following the disturbance is usually enough

to classify the system as stable or unstable. A tentative overview of the different control tasks and

their time horizon following a major disturbance is shown in Fig. 1.1. The control of the actual

operating point is active before and after a disturbance has occurred. For the first seconds the

goal is to guarantee first swing and transient stability. The stability of power systems may need

further adjustments to avoid voltage instability before returning to the control scheme for the post-

disturbance operating point, which itself may require generation rescheduling. Numerous factors

influence the transient stability of an electric power system, e.g., generator loading, generator

inertia, generator output during the fault, fault-clearing time, postfault transmission system

impedance, etc. Transient stability can be improved through system (re-)configuration, e.g., lower

line reactances, or devices, e.g., power system stabilizer as additional control devices applied
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Figure 1.1: Time horizon and control tasks after fault occurrence in a power system

to generator excitation systems, and devices installed throughout the transmission grid, e.g.,

STATCOM, TCSC, and UPFC.

This research will focus on applying FACTS devices and design controls to improve transient

stability of electric power systems. The design of such controls is known as damping control

design. A survey of simulation environments to analyze and design power system controls and

schemes applied follows in the next section.
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Chapter 2

Literature survey and related work

Software tools for an improved power system modeling, simulation, analysis, and control design

cycle have been of interest to both electric utilities and universities for decades. Many different

approaches have been investigated and implemented. This chapter introduces common elements

of all tools and gives a survey of concepts and tools found in section 2.1. The main purpose of

power system analysis packages is to allow the design of controls. This is especially important for

the new FACTS devices as they are the most powerful control elements of today’s electric power

systems. Their possible impact on system stability requires insight into their characteristics and

operating schemes. Section 2.2 gives an overview of FACTS devices and controls found in the

literature. This is followed by related work on damping control and an introduction to rule-based

or fuzzy control in sections 2.3 and 2.4.

2.1 Modeling and simulation environments for power systems

Modeling at the transmission level is based on balanced three-phase systems allowing a simplified

single-phase approach. Nevertheless, numerous difficulties due to increasingly complex intercon-

nections between different power generation and consumption areas, as well as the introduction

of high-power and high-voltage power electronics, exist. This section discusses issues arising in

the field of power system simulation and analysis and introduces fundamental elements of sim-

ulation environments in section 2.1.1, followed by an overview of commercial software products

and reported approaches at universities in section 2.1.2.
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2.1.1 Introduction to power system analysis

The analysis of electric power systems on the transmission level involves many different aspects.

Key elements are briefly introduced next.

System representation: The power system seen at the transmission level allows the sim-

plified representation by an equivalent single-phase system at the fundamental system frequency.

This assumption means that the costumers’ load demands are equally split among the three phases

and all electrical quantities are balanced throughout the system with only minor deviations from

the nominal frequency. Harmonics are not of concern at this modeling level.

Load flow: The first step in any power system study is the computation of the load flow

solution. The load flow solution gives a full description of the system at a specific point in time.

Taking into account the costumers’ load demands, the operational transmission system, and the

generators and their controls, the bus voltages and resulting power flows are computed. The

result is used during the initialization phase of dynamic studies to specify the power system at

the start time. Repeated load flow computations based on different loading conditions can be

used to examine the steady-state voltage stability.

Steady-state voltage stability: Load flow solutions due to different loading conditions can

be used to identify buses in the power system which are likely to violate recommended voltage

limits (usually ±5% of the nominal value). The identified buses serve as indicators for required

additional voltage stabilizing elements, e.g., SVC, STATCOM, and their ratings.

Transient stability analysis: Based on the load flow solution describing a specific operating

condition and a given disturbance scenario transient studies are performed. The differential-

algebraic power system equations are continuously solved over a specified period of time. The

system stability is judged on the ability of the power system to maintain synchronism.

All of the above mentioned elements have been realized utilizing different approaches with

very different capabilities. An overview of related work, development environments, fundamental

concepts, and limitations is presented next.

2.1.2 Related work on simulation and analysis software

Several products, e.g., Eurostag [22], PSAPAC [70], and PSS/E [71], have been developed using

FORTRAN. Though this has the advantages of widely available and well-tested numerical rou-

tines, e.g., eigenvalue computations, and the possibility to handle large-scale systems, it comes

with the drawback of high development time. Functionality and components which cannot be
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added using a graphical user interface require a difficult and error prone low level coding process.

Also, libraries for control design and artificial intelligence technologies are not available. In order

to overcome some or all of these limitations different approaches have been taken.

The object-oriented software design has been suggested to cope with the problem of imple-

mentation of new devices. In [24] and [56] C++ was utilized to increase modeling flexibility.

Each model object represents a physical subsystem and can be further used by inheritance and

aggregation to develop a power system class structure. While greatly improving modeling and

model reuse this approach suffers from an increase in required simulation time and the necessity

of low level coding. Just as in the previous case user interface and graphical representation of

results have to be provided by the user.

A power system modeling toolbox based on the object-oriented simulation environment Dy-

mola [17] is ObjectStab [63] [68]. Dymola supports the unified object-oriented modeling language

for physical systems Modelica [59]. The support of noncausal modeling and symbolic prepro-

cessing allows minimize the size of the differential-algebraic equation (DAE) systems (see [19])

and guarantees efficient simulations. A graphical user interface supports interactive parameter

specification. Current drawbacks of Dymola are problems in finding consistent initial conditions,

i.e., solving the load flow, and the missing support for sparse matrix computations.

The possibility of utilizing MATLAB/Simulink’s capabilities of advanced numerical and sym-

bolical analysis [55], [54] for power system simulation has sparked several research activities.

Hiyama, Fujimoto, and Hayashi [38] and Hiyama and Ueno [40] utilized the advantages of

Simulink’s environment to perform transient stability studies. The approach taken was to model

each device separately (as opposed to PAT’s vectorized approach) and models implemented did

not cover FACTS devices. In one of the applications reported the real-time capabilities of the

MATLAB/Simulink/Real-Time Workshop environment were demonstrated.

Allen et al. [1] report an object-oriented approach within MATLAB/Simulink. Simulink

requires causal modeling making it necessary for the user to associate ports with a predetermined

input or output functionality. Also, connecting models together creates algebraic loops which

are solved iteratively by Simulink’s solvers resulting in increased simulation time. These reasons

make it impractical for modeling large power systems.

Hiskens and Sokolowski [34] describe a combined symbolical and numerical modeling and

simulation approach. The symbolically formulated DAE system is iteratively solved at every

time step. Therefore, it shares the advantages of flexibility and modularity with the Dymola
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environment. Due to the missing step of elimination of redundant equations an unnecessarily

large DAE system with the drawback of reduced simulation performance results.

MatEMTP [4] is a product developed to analyze electromagnetic phenomena. It is EMTP’s

(Electromagnetic Transients Program [20]) analogon within MATLAB to perform detailed three-

phase analysis. Therefore, it is well suited for distribution system studies but not for transient

analysis of large-scale electric power systems.

A commercial toolbox for MATLAB/Simulink is the Power System Blockset [43] (PSB). The

PSB targets just as MatEMTP detailed three-phase analysis and is, therefore, not appropriate

for transient stability studies.

Another commercial third party product for the MATLAB/Simulink environment is the Power

System Toolbox (PST1). The purpose of the PST as developed by Chow in the early 1990s [13] is

to provide models of synchronous machines and control systems for performing transient stability

simulations of electric power systems and small-signal stability analysis. The PST performs non-

linear simulations of power systems including conventional elements of power generation, trans-

mission, and consumption, e.g., synchronous generators, excitation systems, turbine-governors,

power system stabilizers, HVDC links, static VAR compensation, and ZIP-loads. So far the PST

does not support modern FACTS devices, e.g., UPFC, STATCOM, SSSC, etc. The numerical

solution method for the DAE system is based on a simple predictor-corrector method as ordinary-

differential equation (ODE) solver and Newton’s method for interfacing HVDC-converter and

static and dynamic load buses. The possibility to set the time-step for the simulation process

gives the user control over the accuracy of the simulation results. The incorporation of FACTS

devices results in a stiff power system with time constants varying over a far wider range (1 ms

to 10 s) than ever before and ODE solvers have to be able to handle this new situation efficiently.

The PST solver lacks this property. Also, a PST user-interface for the nonlinear simulation and

linearization process does not exist; data and simulation files are based on the interplay of a large

number of m-files only.

The dynamic models are coded as MATLAB-functions [14] and the authors provide a set

of demonstration files to enable the user to perform studies. Since the toolbox is based on

MATLAB m-files, the possibility to add customized models and applications by following the

modeling conventions, structure and data requirements, and the method of interconnecting the

models is given.
1The Power System Toolbox (PST) is maintained by Cherry Tree Scientific Software, Colborne, Ontario, Canada,

http:\\www.eagle.ca\∼cherry.
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Figure 2.1: Identified environment and components

The advantage of the PST (as compared to many other simulation packages) is the accessibility

of all variables used for the computations due to their global visibility in the MATLAB workspace.

Also, the extensibility of PST allows the addition of FACTS devices. The drawbacks are the

numerical difficulties and low efficiency resulting in long simulation times. The combination

of interacting m-files and the global variables creates a rather confusing and hardly extensible

simulation environment. Therefore, a different approach is desirable.

The mentioned limitations lead to the idea of “restructuring” the power system in terms of

creating a data structure which is easier to understand, simpler to extend, and which makes use

of more sophisticated numerical solution techniques. A transient analysis toolbox should build on

the PST’s advantages of vectorized routines within MATLAB by incorporating FACTS devices

and control schemes into the steady-state computations and to develop a Simulink block library

for transient stability studies. Both have been targeted and explored in the development of the

proposed Power Analysis Toolbox (PAT). A graphical summary of the environment, required

components, and desired functionality as identified by the review of available software is shown

in Fig. 2.1.
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2.2 Overview of FACTS devices

A power system is an interconnection of generating units to load centers through high voltage

electric transmission lines. Large disturbances such as loss of transmission lines and/or generat-

ing units occur frequently, and will probably occur at a higher frequency due to deregulation. As

transmission lines become more and more loaded close to their thermal limits new ways of main-

taining stability at all times must be found. The FACTS technology program promotes the use

of reliable, high-speed power electronic controllers to increase controllability and optimization of

the existing power system. A wide range of FACTS devices is available today. The characteristics

of FACTS devices of interest for this research are summarized in the following.

Static VAR Compensator: A SVC is an adjustable susceptance used primarily to maintain

a constant voltage at its terminal by adjusting the reactive power exchanged with the power

system. The most common topology consists of fixed or switched capacitor-banks in parallel with

a thyristor-controlled reactance. The utilization of the SVC to improve damping of power swings

has gained increased interest and a number of control schemes have been suggested. Besides

the principal idea and modeling in [32], practical application in [47] and robust control schemes

improving performance of power systems using fuzzy logic technology [39] have been reported.

Thyristor-Controlled Series Capacitor: The TCSC arrangement resembles the SVC

topology but is used as a series device between two power system buses. The overall effective

impedance can be varied in a continuous manner. The TCSC compensates the line’s reactance

by up to 70%. A small inductive operating range has been used in some applications to reduce

short-circuit currents and to allow power modulation to damp oscillations [32]. The most common

mode of operation is the constant impedance mode combined with an additional transient stability

controller to improve the dynamic performance of the power system. Modeling and a basic control

scheme have been described in [32], a robust control scheme improving performance of power

systems using a model matching approach can be found in [85], and an approach based on the

transient energy function in [67].

Static Synchronous Compensator: The basic principle of a STATCOM is the generation

of a controllable AC voltage by a voltage-source converter connected to an energy storage unit

(DC capacitor) to exchange the necessary amount of reactive power to keep the bus voltage at a

specified value [32], [77]. The advantage over the SVC is the improved operating characteristic.

The compensation is independent of the actual voltage level at the bus and the time delay between

changes in the power system and device response is decreased. Different control schemes ranging
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from simple transfer functions in [11] and [32] to a decoupled approach in [75] and a multivariable

approach in [95] have been suggested.

Static Synchronous Series Compensator: The operation principle of the SSSC equals

the basic idea of the STATCOM. It also generates a controllable AC voltage through a voltage-

source converter connected to an energy storage unit (DC capacitor) but is connected in series

to a transmission line. The advantages over the TCSC are an improved overall performance

widely independent of the actual operating conditions and the nonexistence of the subsynchronous

resonance problem. Modeling and control schemes can be found in [11] and [32].

Unified Power Flow Controller: The UPFC is the most versatile FACTS device to have

emerged in the electric power industry so far.2 It is primarily used for voltage support and control

of active and reactive power flows on transmission lines to allow for their secure loading [18], [27].

Secondarily, the UPFC can be used to damp power oscillations [49], [64], and [93]. Operation,

modeling, interfacing, and UPFC control strategies have been investigated by several authors

[42], [62], and [89].

GTO-based Back-to-Back Link: The BTBL is functionally equivalent to the conventional

HVDC back-to-back scheme but applying GTO-based voltage-source converter technology results

in improved performance characteristics [6]. It can be used to link power system areas with dif-

ferent dynamic characteristics and system frequencies. Notable is the capability of the converters

to produce reactive power and therefore add to the voltage-stability support of the power sys-

tem making additional SVCs (as is the case with traditional HVDC converter technology) at the

terminals unnecessary.

An overview of FACTS devices is given in Table 2.1. The various FACTS devices are listed

according to their connection characteristics. The table summarizes the operating principle,

possible basic control schemes, and local signals as used for supplementary damping control in

the literature. Note that ∆fS and ∆VS represent synthesized frequencies and voltages, e.g.,

difference in neighboring bus frequencies [32].

2.3 Damping control design

For almost 40 years control devices have been sought to provide damping for low-frequency,

electromechanical oscillations. These oscillations are often persistent for long periods of time
2The only UPFC built so far is at the Inez Station of the American Electric Power (AEP) in Kentucky. Each

converter has a rating of ±160 MVA and the UPFC is used for voltage support and power flow control.
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Table 2.1: FACTS devices
Device Basic Local

Device Type principle control modulation signal
SVC shunt varying bus voltage

reactance
STATCOM shunt reactive bus voltage

source
TCSC series varying line |P |, |I|, ∆fS , ∆VS

reactance compensation
SSSC series reactive line

source compensation
UPFC shunt+series reactive source+ bus voltages

series compensation active power flow
line compensation

BTBL shunt+shunt reactive source+ bus voltages
phase compensation active power flow

thus limiting power transfer capabilities. The Power system stabilizer (PSS) was the first device

used to oppose these oscillations via modulation of the generator excitation systems, but static

VAR compensators and HVDC links have also been utilized [46]. Much effort was put into

research designing appropriate damping controllers. PSSs are located at the generation site and

can observe and control local modes. Interarea modes often belong to oscillations which cannot

be damped by application of PSSs, and control devices within the transmission system are more

effective. A detailed investigation and proof of existence of these so-called fixed modes can be

found in [99]. Since the introduction of the FACTS devices, attempts to investigate the probable

influence of siting, decision on the best input signal, and the varying capabilities of the different

FACTS devices to overcome these restrictions have been reported [25], [57], [91], and [92].

Continuous transfer functions of lead-lag type designed using linear analysis or parameter

tuning through simulations have been presented in [42], [90], and [93]. They are designed for a

specific operating condition and may therefore experience reduced effectiveness when conditions

change. In [72] coordination of multiple FACTS stabilizers using optimal eigenvalue placement

was presented. Besides linear analysis tools (see [46] for an overview), more advanced and modern

approaches including self-tuning control [12], sliding mode control [45], robust techniques [85],

[94], and fuzzy logic [15], [41], [49], [58], and [64] have been applied to either PSS, SVC, or UPFC.

A self-organizing PSS using a fuzzy auto-regressive moving average model has been presented

in [69]. They offer better performance over a wider range of operating conditions than fixed-

parameter controllers. The transient energy function approach was chosen to design damping

controls independent of the power system structure utilizing the UPFC and series compensating
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devices as actuators in [51] and [67].

2.4 Rule-based control - Fuzzy logic technology

Fuzzy logic is used to describe systems that are “too complex or too ill-defined to admit precise

mathematical analysis [9].” Major features are the use of linguistic terms rather than numerical

variables and the characterization of relations between variables by fuzzy conditional statements

or rules. For a book on fuzzy logic and control see [96], a report focusing on design of fuzzy

controllers is [44], for a summary of fuzzy logic applied to process control see [9], [61] gives an

overview of fuzzy set theory and its applications in power systems, and [88] is a recent tutorial

on fuzzy logic applications in power systems. Fuzzy logic gives the engineer the possibility to

deal with imprecision, a method to model human behavior, and a tool to control systems that

cannot be modeled rigorously. The principle difference between conventional techniques and the

rule-based approach is that the latter uses qualitative information rather than rigid analytic

relations. Nevertheless, the overall process of constructing a fuzzy controller is similar to an

analytical controller in the sense that the system must be understood, key parameters identified,

and a control methodology developed. However, the two approaches differ in the methods used

to calibrate the controller. Whereas numerous analytical tools exist for parameter tuning in

conventional control design, the fuzzy logic counterpart lacks a standard technique. Repeated

closed-loop trials are necessary to gain enough knowledge to identify crucial parameters, tune

parameters, and to formulate the rule-base. In this research the fuzzy logic technology will be

used to complement the control of FACTS devices in order to improve transient stability of power

systems.

2.5 Contribution of the dissertation

The objectives of this work are twofold:

• The impact of FACTS devices on power system operation requires the ability to include

new devices into simulation environments with a short implementation time. For this reason

PAT has been developed. PAT will serve as a single framework for both steady-state and

dynamic stability analysis, i.e., computation of load flow solutions, steady-state voltage

stability analysis, transient stability studies, and small-signal analysis. The core of PAT,

PAT’s data structure, has been designed in a modular way so that the user can access the
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data in a systematic manner as well as expand PAT by new components with a limited

amount of additional work. Besides PAT’s framework a wide range of FACTS devices and

possible control schemes have been implemented. These prototypes can be used to add new

devices and control schemes.

• The second part of the work concentrates on the most powerful and complex device of

the FACTS series, the UPFC. Besides controlling the power flow, the UPFC can be used

to improve the stability of the system. This is investigated using fuzzy techniques. The

chosen approach incorporates expert knowledge rather than linear analysis to improve the

performance of power systems during low-frequency power oscillations. The performance

of the proposed damping controller is demonstrated on test systems. Simulation results

show that the UPFC fuzzy damping controller can significantly enhance operation and

performance of longitudinal power systems.
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Chapter 3

Power Analysis Toolbox

3.1 Overview

The objective of PAT is to allow modeling, simulation, and analysis of large-scale electrical power

systems at the transmission level in a single environment. As pointed out in previous sections

PAT utilizes MATLAB/Simulink’s capabilities of vector and matrix computations. Also, the

call for advanced numerical ODE techniques and a user-friendlier simulation environment has

been addressed by choosing Simulink as an environment for transient stability studies. Simulink

is based on block-oriented modeling and allows the extension of its model library by means of

system-functions (s-functions) as well as systems formed by already existing library blocks. S-

functions describe block properties during the different steps of the simulation, e.g., initialization,

computation of derivatives and outputs, updates of discrete states, etc. MS-functions are s-

functions written as MATLAB m-files. Therefore, they allow the same flexibility as any MATLAB

m-file but with the advantage of the graphical, block-oriented Simulink simulation environment.

Simulink itself comes with a choice of advanced ODE solvers improving numerical stability and

accelerating the simulation process.

Furthermore, Simulink has been and will be of interest for universities as well as industry

as a high-level simulation environment and a platform for add-on products. Already existing

products include control toolboxes, neural network and the fuzzy logic toolbox, Stateflow toolbox,

and Real-Time Workshop. Simulink and its toolboxes allow a modern and intelligent controller

design. Nevertheless, any Simulink model can be linearized at a chosen operating point which

guarantees the ability to base the controller design on “classical” methods, e.g., pole placement.

All the “traditional” elements of a power system as well as the FACTS devices mentioned
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previously have been implemented as a new Simulink block library. The PST load flow program

has been modified to incorporate FACTS devices and to make use of the advanced data structure.

The new data structure presents the power system data in a clear and understandable way.

Additionally, functions for retrieving the state space model of a power system and basic modal

analysis have been included in PAT. The developed toolbox shows promising results in terms of

user friendliness, flexibility in setting up new test systems, flexibility and ease of implementation

of new elements, linearization process, and increased simulation speed (up to 20 times faster than

the PST) and has been tested with systems of up to 100 synchronous machines and static and

dynamic loads of about 1500 states. The following sections describe the conceptual design, the

data structure, the main functions provided with PAT, as well as the block library developed.

3.2 Conceptual design

The functionality necessary and included in PAT are the basic elements as described earlier

in section 2.1.1. These components and their relationships constitute the conceptual design

and are shown in Fig. 3.1. The main objective was to create each of these components in a

single environment to ensure the possibility of a seamless interplay among modeling, simulation,

analysis, and synthesis. A closer look at PAT’s functionality is presented in Fig. 3.2. For a specific

case study two input files are required. The power system data file, which is an m-file obeying

the data format, and secondly the model (MDL) case study file for the time domain analysis.

PAT itself is a collection of interacting m-files that perform sub-computations, e.g., setting up the

sparse transmission system matrix, with top-level functions as a user interface to PAT’s routines.

These top-level functions have been written to guarantee a convenient working experience. The

most important functions are steady-state computations (load flow and initialization for the

various power system devices) and a linearization routine. The following gives details about

PAT’s implementation.

3.3 Implementation

The main functional components included in PAT use an approach similar to object-oriented

programming. The functions written operate on the power system data structure, directly fa-

cilitating vector and matrix storage and computations of power system data. The next section

describes the data structure.
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3.3.1 Power system data structure

The new representation of the power system in MATLAB’s workspace makes use of the data

structure as defined by MATLAB [55]. Structures are arrays with named “data containers”

called fields. The fields of a structure can contain any kind of data. For example, one field might

contain a text string representing a device name, another might contain a scalar representing a

controller parameter, a third might hold a matrix of transmission line data, and so on.

PAT reads the power system data file1 and sets up the power system data structure in the

workspace. A representation of the main elements of the power system structure is shown in

Fig. 3.3. It presents part of the relationship between the different elements of a power system and

their field names. The root of the structure contains high level descriptions of the power system,

e.g., PSS, synchronous machines, FACTS devices, transmission grid information. Each of these

stores more details concerning general environment specifications, parameters, control schemes

and controller parameters, load flow solution, and state information for each device.

3.3.2 Preprocessor

The initial steps in parsing the PAT-data file and creating the power system data structure in the

workspace is done by the preprocessor. As of yet only a modified PST-data format is supported.

This format supports load flow and dynamic data. Once the structure has been successfully

created the load flow can be solved.

3.3.3 Load flow

The load flow function takes the data structure as input and returns the data structure with the

solved load flow. The algorithm used is an augmented Newton-Raphson iteration scheme allowing

the incorporation of the various FACTS devices and their control schemes. After the load flow

solution has been found the initial conditions for the dynamic elements are computed and added

to the data structure.

Besides the computation of a single load flow case, it is helpful in power system analysis to

find the voltage profile and eigenvalues for a range of system loadings. This functionality is also

provided.
1A modified PST-data file format to ensure compatibility with the existing PST but includes the FACTS devices

as described in section 3.4.
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3.3.4 Transient analysis - Simulink block library

To take advantage of Simulink’s environment and its sophisticated numerical techniques to solve

ordinary differential equations and algebraic loops a new power system block library has been

developed. This library allows the user to drag-and-drop different elements of a power system,

e.g., synchronous generators, transmission grid, power system stabilizers, excitation systems,

turbine-governor systems, various FACTS devices, and ZIP-load models (static and dynamic)

into the model. Through utilization of the power system data structure the Simulink blocks

access the necessary information kept in MATLAB’s workspace. All blocks make use of the

capability to propagate vector signals, therefore allowing the efficient modeling and simulation

of large power systems. PAT’s transient modeling concept within Simulink is shown in Fig. 3.4.

Each block represents a specific type of device. All devices take the current as input signal from

the transmission system but only in the case of the generators are the output voltages explicitly

computable. Static and dynamic loads with constant power or current characteristics, FACTS
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Figure 3.5: PAT’s Simulink block library

devices, and distributed generators (DG) which are connected to the power grid using power

electronic technology require the terminal voltages to be found iteratively (see section 3.4 for

details) using the partitioned-solution approach for the DAE system [52]. Simulink’s library has

been extended by numerous blocks creating the PAT block library as shown in Fig. 3.5.

Modeling concept

The extension of Simulink by additional block libraries can be done in two different ways.

Advantages and differences of these approaches can be found in detail in the Simulink s-function

manual [53] and the Simulink manual [54]. A brief summary is given next.

System-functions: S-functions [53] provide a mechanism for extending the capabilities of

Simulink by adding blocks in MATLAB, C, C++, Fortran, or ADA. By following simple rules,

any algorithm can be implemented in an s-function. After writing the s-function and placing its

name in an s-function block (available in the Functions & Tables block library), a customized user-

interface can be created by masking the model. Mainly MATLAB-s-functions (ms-functions) will

be used for this research. Any s-function uses a special calling syntax that enables it to interact

with Simulink’s solvers. The form of s-functions is very general and allows the implementation
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of continuous, discrete, and hybrid systems.

Simulink blocks: The combination of already existing Simulink blocks [54] to form new

power system elements is another approach. Improved vector- and matrix operation capabilities

of blocks and signal lines allow highly optimized computations and simulations of power systems

faster than real-time. Additional advantages are the functional correctness of the blocks, improved

numerical robustness and interaction with Simulink’s solvers, and the ability to compile models for

hardware-in-the-loop systems. Nevertheless, s-functions have to be used in order to incorporate

models that cannot be realized by Simulink’s blocks.

The structure is a necessity for the efficient implementation of the new power system simu-

lation environment within Simulink. Once the load flow is solved the data structure is set up in

the workspace and can be accessed by the Simulink model (or better, its blocks) to extract the

necessary information (parameters) for the simulation.

3.3.5 Linear system representation and modal analysis

PAT utilizes the built-in capability of Simulink to retrieve the state space representation of a

MDL-case file. The linearization process is based on the perturbation method as given in the

following. Starting with the system in the general form of

ẋ = f(x, u) (3.1)

y = g(x, u)

where x is the state vector, u the input vector, and y the vector of outputs, the linear system at

the chosen operating conditions x0 and u0 and described by

∆ẋ = A∆x + B∆u (3.2)

∆y = C∆x + D∆u

is sought. The symbol ∆ denotes the deviation from the equilibrium point. The matrices are

determined by perturbing each state xi and input ui separately by a small amount (of order 10−5)

and using

Ai = ẋ−ẋ0
∆xi

Bi = ẋ−ẋ0
∆ui

Ci = y−y0

∆xi
Di = y−y0

∆ui

(3.3)

where the matrix index refers to the elements in the ith column.



CHAPTER 3. POWER ANALYSIS TOOLBOX 26

The toolbox provides a high-level function as convenient interface to the linearization process,

finds the reduced power system model by replacing the absolute machine angle states by relative

ones, and computes data of interest. The information computed is stored in structure format in

MATLAB’s workspace. Additionally, the sparsity structure of the system matrix, an eigenvalue

plot, and the pole-zero map of the system can be displayed.

An additional high-level function for modal analysis is provided with PAT. It computes con-

trollability, observability, residues, and the frequency and damping of modes and performs a

coherency analysis based on speed participation. Results are stored in structure format in the

workspace as well as in files.

3.3.6 Example

A small example is given here to demonstrate the analysis of a power system using PAT. The

power system chosen is the Three machine nine bus system (see Fig. 3.6a), a simplified version of

the WSCC system. The system is well documented in the literature, where further details can be

found [2]. The main purpose is to present step by step the computations performed and results

typically obtained. A graphical presentation of the analysis performed and the interplay of the

functions provided are shown in Fig. 3.7.

Step 1 - Load flow: Using the prepared data file as input for the load flow and initialization

function the steady-state computations are performed. The data file and the load flow solution

are given in appendix B. At this point the necessary information for the time domain analysis

has been determined and the next step can follow.

Step 2 - Transient analysis: The second step requires building of the MDL-case file using

PAT’s block library as shown in Fig. 3.6b. Results of the transient study of a 83 ms three-

phase fault on line 7-5 are shown in Fig. 3.8 and 3.9. The fault excites undamped swings in

the synchronous machines that change magnitude, mean, and frequency after reclosing. Whereas

the relative angles remain limited, the generator speeds increase indefinitely. From the speed

plot it can be seen that generator 2 and 3 form a coherent group swinging against generator

1. The voltage plots underline the system’s instability. The plots reveal that Simulink’s ODE

solver correctly detected the switching times (fault on and clearing time) as shown in Fig. 3.9b

using its zero-crossing detection algorithms. The simulation of 10 seconds using ODE15s with

a maximum time step of 10 ms requires about 550 ms (Pentium IV, 512 MB RAM, 1.7 MHz,

MATLAB/Simulink R12.1, Win2000).
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Table 3.1: Three machine nine bus example: Modal analysis
(a) Eigenvalues and residues

Number pre/post faulted residues
1 j13.3614 j13.4345 0.0001
2 -j13.3614 -j13.4345 0.0001
3 j8.7006 j6.7732 0.0032
4 -j8.7006 -j6.7732 0.0032
5 0 0 0.0147

(b) States

Number States
1 angle 2-1
2 angle 3-1
3 speed 1
4 speed 2
5 speed 3

Table 3.2: System matrix of the WSCC example

A =



0 0 −376.991 376.9911 0

0 0 −376.991 0 376.9911

0.036 0.0283 0 0 0

−0.206 0.088 0 0 0

0.1957 −0.4041 0 0 0



Step 3 - Linearization: By invoking the linearization function the state space representation

is obtained. Eigenvalues and a list of states are given in Table 3.1. The system matrix is given

in Table 3.2. It takes the data structure as one of its input arguments and returns results and

additional information in structure format. The eigenvalues have very small real parts due to

the neglected damping coefficients. Also, the system has been reduced to the actual number of

independent states. Analyzing eigenvalues and time domain signals, it can be seen that the lower

frequency mode of about 1 Hz together with the zero pole dominate in both cases as suggested

by the residues. Also, the periods of the swings of the faulted and reclosed line cases agree with

the 1.08 Hz and 1.38 Hz mode (6.77 rad/s and 8.70 rad/s).

Step 4 - Modal analysis: Output produced by the modal analysis function for the 1 Hz mode

is given in Table 3.3. The scaled compass plot for the speed participations is shown in Fig. 3.10.

It can be seen that machines 2 and 3 swing against machine 1, which agrees with the result of

the time domain analysis.
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Table 3.3: Modal group analysis of the WSCC example
System: A = [5x5], B = [5x0]

C = [0x5], D = [0x5]
Found 3 machines.

Found 1 low frequency mode(s) in the range of 0.50 - 2.00Hz.
1: Mode 3, 1.3847Hz / 8.7006rad / d = -0.00000, (EM) (delta)

Analyzing groups ...
1: Mode 3, 1.3847Hz / 8.7006rad, d = -0.00000 (EM) (delta)

Group 1: 1
Group 2: 3 2

Wrote mode groups into file (ModGroup.txt).
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3.4 Modeling of FACTS devices

This chapter presents the various FACTS models implemented for load flow and transient stability

studies. The power system and its models are represented by a single-phase equivalent of a 3-phase

balanced power system assuming that only the fundamental frequency components of currents

and voltages are of importance and, therefore, any harmonics will be ignored. This is common

practice for stability studies and simplifies the modeling and computational complexity. However,

it still allows to find models that are detailed enough and suitable for transient stability analysis.

3.4.1 Unified Power Flow Controller (UPFC)

The UPFC can be used not only to control voltage levels and flow of active and reactive power

on transmission lines to allow for their secure loading but also to improve and maintain the

stability of electric power systems. Power flow on the line can be affected by either changing

the impedance of the line, the voltage magnitudes, or the angles at the terminals of the line.

Until recently all of these parameters were controlled separately. However, the UPFC allows

simultaneous or sequential control of these parameters with real time transfer from one control

scheme to another [3], [5], and [82].

The objective of this chapter is to incorporate the UPFC steady-state and dynamic models

and its basic controls in PAT’s simulation environment. Later the UPFC will be used to enhance

operation and control of electric power systems.

Basic operation

The UPFC is a device placed between two buses - the sending bus and the receiving bus as

shown in Fig. 3.11 [27], [89]. The UPFC consists of two voltage-source converters (VSCs) with a

common DC link. For the fundamental frequency model the VSCs are replaced by two controlled

voltage sources. The voltage source at the sending bus is connected in shunt and will therefore be

called the shunt voltage source. The second source, the series voltage source, is placed between

the sending and the receiving buses. Both voltage sources are connected to the power system

through appropriate transformers. The series converter injects an AC voltage of controllable

magnitude2 and phase angle in series with the transmission line. The main function of the UPFC

shunt converter is to supply or absorb the active power demanded by the series converter at the
2The term magnitude refers to the root-mean-square value.
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Figure 3.11: UPFC fundamental frequency model

common DC link. This arrangement allows free flow of active power in either direction between

the AC terminals. There cannot be reactive power flow through the DC link - the reactive power

is exchanged (absorbed or generated) locally by each converter.

Load flow model and algorithm

The UPFC as part of a power system and its general representation for LF computations is shown

in Fig. 3.12. Power injections at the sending and receiving buses combined with an impedance

linking the two buses are used as equivalent. This is known as the injection model [62], [66]. The

correct values for the power injections and the presence and value of the linking impedance depend

on the chosen control scheme. Each of the schemes requires the implementation of a different

algorithm as discussed in the following. Common to all is that the steady-state operation of a

UPFC is characterized by a constant DC link voltage. In order to keep the capacitor voltage at a

specified level a zero net power interaction of the UPFC with the power system has to be ensured.

This requirement holds true when the active power supplied by the shunt converter PSH =

Re(V SHI
∗
SH) satisfies the active power demanded by the series converter PSE = Re(V SEI

∗
Line)

PSH = PSE . (3.4)

The following discusses the algorithms as implemented in PAT, followed by a summary of com-

putations of UPFC quantities common to all schemes.
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• Scheme 1: V-PQ control

This scheme assumes that the UPFC is operated to control the sending bus voltage magni-

tude and to keep the active and reactive power flow on the transmission line at the receiving

bus at specified values. The following choices have been made: No linking impedance, re-

ceiving bus modeled as load bus (PQ-type) with the desired PQ-flow as negative load, and

the sending bus modeled as generator bus (PV-type). The last choice means that the re-

quired reactive generation at the sending bus will be determined as for any generator in the

power system. The active part can be directly set to the desired active power flow value in

case of a lossless UPFC. Special care has to be taken only in case of considering losses3 by

computing the actual occurring losses at the current LF conditions and adding them to the

sending bus.

• Scheme 2: V-PV control

In this scheme the UPFC is operated to control the sending and receiving bus voltage

magnitudes and at the same time keeps the active power flow on the transmission line

constant. The following has been done to add the scheme to the Newton-Raphson LF-

procedure: No linking impedance, receiving bus modeled as generator bus (PV-type) with

the desired active power flow modeled as positive generation, and the sending bus modeled

as generator bus (PV-type). The required reactive generation at each bus is determined

as for any generator in the power system by the usual LF algorithm. The active power

injection is determined as in the previous scheme.
3Losses may include transformer, converter, and DC-link losses. So far, PAT takes only transformer losses into

account.
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• Scheme 3: V-VSE control

In this scheme the UPFC is operated to control the sending bus voltage magnitude and

injects a specified (relative) series voltage. This requires the adjustment of active power

injection at both buses and the reactive injection at the receiving bus. No linking impedance

is used.

• Scheme 4: V-Inactive

In this scheme the UPFC is operated to control the sending bus voltage magnitude and with

inactive series converter. This can be achieved by using a small impedance value linking

the buses. No extra computations have to be performed.

The general LF algorithm is given in Fig. 3.13. It shows that the conventional NR-LF steps

have to be extended by the required adjustments in injections before computing the actual power

mismatch. Also, all of the above control schemes allow set limits for the reactive power injections

of the shunt converter including the special case of no voltage control (limit set to zero).
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Common mathematical relationships for the UPFC LF computations are

ILine =
(

PR + jQR

V R

)∗

V ZSE
= ZSEILine

V SE = V R + V ZSE
− V S

SSE = V SEI
∗
Line (3.5)

IS =
(

SS

V S

)∗

ISH = −IS − ILine

V ZSH
= ZSHISH

V SH = V S − V ZSH

SSH = V SHI
∗
SH

where PR and QR are the active and reactive line power flow measured at the receiving bus, ILine

is the line current, V ZSE
is the voltage drop due to the series transformer, V SE is the injected

series voltage, SSE is the injected power of the series voltage source, SS is the power flow at the

sending bus, IS is the current at the sending bus, ISH is the current into the shunt voltage source,

V ZSH
is the voltage drop due to the shunt transformer, V SH is the injected shunt voltage, and

SSH is the power consumption of the shunt source (see Fig. 3.11 for a graphical representation

of the electrical quantities).

Dynamic model

For transient stability studies the DC link dynamics have to be taken into account and (3.4)

can no longer be applied. The DC link capacitor will exchange energy with the system and its

voltage will vary. The power frequency dynamic model as given in [62], [89], and [42] has been

implemented. The following equation describes this model:

CVDC
dVDC

dt
= (PSH − PSE)SB. (3.6)
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The relationships between the inverter DC and AC side are obtained by applying the Pulse Width

Modulation4 (PWM) technique [60] to the two GTO-based VSCs:

V SH = VSH 6 δSH = mSH
VDC

2
√

2nSHVB

6 (δS − ϕSH) (3.7)

V SE = VSE 6 δSE = mSE
VDC

2
√

2nSEVB

6 (δS − ϕSE).

Note that in the above equations the DC variables are expressed in mksA units while the AC

system variables are expressed as per unit quantities. The system side base values SB and VB

are selected as base power and base voltage and all AC variables are normalized using these base

quantities.

Interfacing

The UPFC model as shown in Fig. 3.14 is used during time domain studies [62], [66]. The network

solution has to be found through an iterative approach at every time instant. This is achieved

by equating the external and internal ac-network relationships for the UPFC terminal currents

IB = [IS ILine]T . UPFC sending and receiving bus voltages, V S and V R, can then be expressed

as a function of generator internal voltages, EG, and the converter injection voltages, V SH and

V SE , by using the relationships for the currents

IB = YBGEG + YBBV B

−IB = YBV B + YCV C

4The UPFC at the Inez/AEP substation uses 48 valves in 12 three-level pole converters and appropriate switching
logic to avoid switching losses associated with PWM. Also, the high number of valves generates almost sinusoidal
voltages making filters unnecessary [32]. The control scheme at a higher level can nevertheless be treated similar
to the PWM scheme.
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resulting in

V B = LGEG + LCV C (3.8)

where

LG = (YB − YBB)−1 YBG

LC = − (YB − YBB)−1 YC

V B =

 V S

V R

 YB =

 − 1
ZSH

− 1
ZSE

1
ZSE

1
ZSE

− 1
ZSE


V C =

 V SH

V SE

 YC =

 1
ZSH

− 1
ZSE

0 1
ZSE


• YBB is the admittance matrix connecting currents to the voltages at the buses,

• YBG is the admittance matrix which gives currents in terms of generator internal voltages,

• YB is the internal admittance matrix which gives currents in terms of bus voltages, and

• YC is the internal admittance matrix which gives currents in terms of injected (controlled)

voltages.

Control output for modulation indices and firing angles combined with (3.7) determine the UPFC

injection voltage magnitudes VSH and VSE . However, the phase angles of the injected voltages,

δSH and δSE , are unknown since they depend on the phase angle of the sending bus voltage,

δS , which is the result of the network solution. The algorithm chosen to determine the voltages

is a fixed-point method and solves (3.8) using functional iterations as long as two consecutive

solutions deviate from each other for more than a chosen limit.5 In each of these steps the absolute

angles of the injected voltages are updated and again used in (3.8) to find better approximations

of the true terminal voltages. This type of interfacing algorithm has been successfully applied to

FACTS devices and has shown good convergence characteristics [42]. But, as for any iterative

procedure, convergence can not be guaranteed and the algorithm may fail to find new terminal

voltages leading to simulation termination. The algorithm for interfacing the UPFC with the

power network is shown in Fig. 3.15. The expression FACTS has been used rather than UPFC

to keep the algorithm in a general form. It will serve as an interfacing procedure for other

voltage-source converter based FACTS devices.
5Limit chosen is of order 10−9.
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Figure 3.15: Algorithm for interfacing VSC-based FACTS devices with the power network

Basic control design - (almost) decoupled control scheme

To operate the UPFC in the automatic control modes the UPFC basic control design needs to

be performed. This design involves simultaneous regulation of (i) real and reactive power flows

on the transmission line or real power flow and receiving bus voltage magnitude, (ii) sending bus

voltage magnitude, and (iii) DC voltage. In total it consists of four separate control loops grouped

into series and shunt control scheme. Each of the schemes controls two tasks as described next.

Series Control Scheme: This scheme has two control loops, the first for tracking of the

real power flow at the receiving bus of the line, and the second for tracking the reactive power

flow or the receiving bus voltage magnitude. The objective is to track these quantities following

step changes and to eliminate steady-state tracking errors. This is obtained by the appropriate

adjustment of the voltage drop between the sending and the receiving bus, which is denoted as

V PQ. The voltage can be decomposed into the following two quantities which affect the tracked

power flows:

• VP = voltage component orthogonal to the sending bus voltage (it affects primarily the real

power flow on the transmission line), and
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Figure 3.16: UPFC series control

• VQ = component in phase with the sending bus voltage (it affects mainly the reactive power

flow on the transmission line).

Both voltage components, VP and VQ, are obtained by designing PI (proportional-integral) con-

trollers to guarantee error free steady-state control (Fig. 3.16a, [32]). The corresponding phasor

diagram is shown in Fig. 3.16b. Additionally, the two components are limited in order to keep

the magnitude of the voltage V PQ and line current within ratings. The limited components VPL

and VQL are used to compute the actual injected series voltage:

V PQ = VPQ 6
(
φPQ + δS

)
VPQ =

√
V 2

PL + V 2
QL (3.9)

φPQ = tan−1 VPL

VQL

V SE = V PQ + V XSE

where δS is the angle of the sending bus voltage, and V XSE
is the voltage drop across the series

transformer reactance.

The influence of changes in one of the control components on the other is small whenever

the difference of the sending bus voltage angle (δS) and the remote bus voltage angle of the line

connected to the receiving bus (δ) obeys |δS − δ| � 90◦. Nevertheless, a small disturbance is

noticeable because of the interaction with the transmission system. Therefore, the control scheme

is only almost decoupled resulting in a short transient period where the change in one control

variable will be accompanied by an adjustment in the other.

Shunt control scheme: The second part of the UPFC basic control design deals with the

control of the sending bus voltage and the DC link voltage. This is achieved by using two separate
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Figure 3.17: UPFC shunt control

PI-controllers as shown in Fig. 3.17a [32]. Changing the current component orthogonal to the

voltage will affect the reactive power flow in the shunt branch, which in turn will affect the sending

bus voltage magnitude (Fig. 3.17b). Adjusting the current component in phase with the voltage

will mainly influence the real power flow in the shunt branch. The controller outputs are fed to a

limiter in order to keep injected shunt voltage magnitude and converter current within specified

limits (VSHMAX
and ISHMAX

) [76]. The limited components IPL and IQL are used to compute

the injected shunt voltage

ISH = |IPL + jIQL|

δISH
= δS + tan−1

(
IQL

IPL

)
(3.10)

V SH = V S − V XSH

where V XSH
is the voltage drop across the shunt transformer reactance.

3.4.2 GTO Back-To-Back HVDC link (BTBL)

A typical arrangement for a BTBL as found in [6] is the following: The system-circuit config-

uration consists of two high-voltage terminals. Each terminal is based on four self-commutated

converters. The windings on the AC-system side of the converter transformers are connected in

series. On the DC side, the four converters are connected in parallel and a shunt capacitor is

placed between the two terminal DC link. The capacitor joining the two converters smoothes

DC-link voltage variations. PWM at a switching frequency of 540 Hz for a 60 Hz system (nine

times the fundamental frequency) is used for converter firing control. Due to the increased pulse

number (nine) the harmonic content is reduced and improved steady-state and dynamic perfor-
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Figure 3.18: BTBL fundamental frequency model

mance of the converters is achieved. At both terminals active and reactive power can be controlled

independently of each other.

The BTBL model as implemented here is based on this basic concept. The model will include

coupling transformers, HVDC-link capacitor, and utilize a PWM firing scheme. Again, due to

the high switching frequency assumed only the fundamental frequency components of currents

and voltages are of importance and, therefore, any harmonics will be ignored.

Basic operation

The BTBL is a device placed between two buses referred to as the BTBL sending bus and the

BTBL receiving bus. It consists of two VSCs with a common DC link as shown in Fig. 3.18.

For the fundamental frequency model, the VSCs are replaced by two shunt connected controlled

voltage sources and transformers.

Applying PWM technique to the two VSCs the following equations for the injected voltage

magnitudes for the sending and receiving converters are obtained:

VS = mS
VDC

2
√

2nSVB

(3.11)

VR = mR
VDC

2
√

2nRVB

where mS is the amplitude modulation index of the sending VSC, mR the amplitude modulation
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index of the receiving VSC, nS the sending transformer turn ratio, nR the receiving transformer

turn ratio, VB the system side base voltage in kV, and VDC the DC link voltage in kV.

The phase angles of V S and V R are:

δS = δSB − ϕS (3.12)

δR = δSB − ϕR (3.13)

where:

• ϕS – firing angle of the sending VSC with respect to the phase angle of the sending bus

voltage (δSB)

• ϕR – firing angle of the receiving VSC with respect to the phase angle of the sending bus

voltage (δSB)

The voltage magnitudes, VS and VR, and their firing angles, ϕS and ϕR, with respect to the

sending bus, are controllable in the range of V min
S,R ≤ VS,R ≤ V max

S,R and φmin ≤ ϕS,R ≤ φmax,

where the voltage limits are usually set to ±10% of the nominal voltage level and the angle limits

result from converter ratings. The sending converter injects a controllable voltage such that the

real component of the current in the sending branch balances the real power demanded by the

receiving converter. The real power can flow in either direction between the AC terminals. On

the other hand the reactive power cannot flow through the DC link. It is exchanged (absorbed

or generated) locally by each converter. The sending converter operated to exchange the reactive

power with the AC system provides the possibility of independent shunt compensation for the

line. If the injected voltages are regulated to produce reactive current components that will keep

the bus voltages at their specified values, then the converters are operated in the Automatic

Voltage Control Mode. Another possibility would be to operate the VSCs in the Automatic VAR

Mode by controlling reactive currents to meet the desired inductive or capacitive VAR request.

The receiving converter will be operated to keep the real power flow at its terminal at a specified

value.

Load flow model and algorithm

The BTBL is assumed to be operated to control the real power flow at the receiving bus and

both bus voltage magnitudes. A power system with BTBL as shown in Fig. 3.19a allows the

representation by equivalent power injections as given in Fig. 3.19b. The sending and receiving
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Figure 3.19: BTBL load flow model: (a) Schematic (b) Load flow representation

bus real power injections, PSB and PRB, and voltage magnitudes, VSB and VRB, can be set as

for any other generator bus in the power system. Necessary adjustments when considering losses

are required to guarantee zero net real power interaction

PS = −PR (3.14)

The computations follow the steps as given for the UPFC, and are therefore not repeated here.

Steady-state quantities can be computed directly after a LF solution has been found:

IR = −
(

SRB

V RB

)∗

V XR
= jXRIR

V R = V RB − V XR

SR = V RI
∗
R (3.15)

IS = −
(

SSB

V SB

)∗

V XS
= jXSIS

V S = V SB − V XS

SS = V SI
∗
S

where SRB is the power injected into the receiving bus, IR is the receiving side current, V XR
is

the voltage drop due to the receiving transformer reactance, V R is the injected receiving voltage,

SR is the consumed power of the receiving voltage source, SSB is the power injected into the

sending bus, IS is the current at the sending bus, V XS
is the voltage drop due to the sending

transformer reactance, V S is the injected sending voltage, and SS is the power consumption of

the sending source.
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Dynamic model

The dynamic model implemented is the fundamental frequency model of the arrangement as

shown in Fig. 3.18. Only the capacitor voltage is considered to be a dynamic state as the BTBL

will exchange energy with the system and the DC link voltage will vary during transient periods,

e.g., periods caused by changes in system configuration, fault in the power system, etc. The

power frequency dynamic model is given by

CVDC
dVDC

dt
= (PS + PR)SB (3.16)

where PS is the real power consumption of the sending VSC, PR the real power consumption of

receiving VSC, and C the DC-link capacitor. Note that in the above equation the DC variables

are expressed in mksA units while the AC system variables are expressed as per unit quantities.

SB is the system base power.

Interfacing

In order to find the network solution (bus voltages and currents) an iterative approach has to be

used. The BTBL sending and receiving bus voltages V SB and V RB can be expressed as a function

of generator internal voltages, EG, and the BTBL injection voltages, V S and V R (3.17). Control

output and (3.11) determine the BTBL injection voltage magnitudes VS and VR. However, the

phase angles of the injected voltages, δS and δR, are unknown since they depend on the phase

angle of the sending bus voltage, δSB, which is the result of the network solution. Therefore, the

algorithm presented for interfacing FACTS devices in Fig. 3.15 can be used for interfacing the

BTBL with the power system.

Equating the external ac-network relationship to compute the BTBL terminal currents with

the BTBL internal relationship for its terminal currents results in the equation for the (new)

terminal voltages of the BTBL (see the section on interfacing the UPFC for more details, p. 36)

V B = LGEG + LCV C (3.17)
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where

IB =

 IS

IR


LG = (YB − YBB)−1 YBG

LC = − (YB − YBB)−1 YC

V B =

 V SB

V RB

 YB =

 − 1
jXS

0

0 − 1
jXR


V C =

 V S

V R

 YC =

 1
jXS

0

0 1
jXR


• YBG is the external admittance matrix that gives currents in terms of generator internal

voltages,

• YBB is the external admittance matrix connecting currents to the voltages at the buses,

• YB is the internal admittance matrix which gives currents in terms of terminal voltages,

and

• YC is the internal admittance matrix which gives currents in terms of injected (controlled)

VSC voltages.

Basic control design - (almost) decoupled control scheme

The chosen control structure allows the almost decoupled and independent control of the real

power flow and the voltage magnitudes at the sending and receiving buses, respectively. The

control task is split into two separate schemes for the sending and the receiving bus. Each of

these is again based on two controllers and, therefore, the BTBL control is based on four separate

controllers in order to keep the device operational as well as to control the desired quantities.

Sending bus VSC control

The sending bus VSC control deals with the control of the sending bus voltage and the DC link

voltage. This is achieved by using two separate PI controllers as shown in Fig. 3.20a. Changing

the current component orthogonal to the sending bus voltage (ISQ
) will mainly affect the reactive

power flow in the shunt branch, which in turn will affect the sending bus voltage magnitude.
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Figure 3.20: BTBL control scheme

Adjusting the current component in phase with the sending bus voltage (ISP
) will mainly influence

the real power flow in the shunt branch. The controller outputs are fed to a limiter in order to

keep the injected voltage magnitude and converter current within specified ratings. The limited

components ISPL
and ISQL

and (3.18) are used to compute the injected voltage. Therefore, the

phasor diagram as given for the UPFC shunt controller (Fig. 3.17b) applies and is not repeated

here.

IS =
∣∣ISPL

+ jISQL

∣∣
δIS

= δSB + tan−1

(
ISQL

ISPL

)
(3.18)

V S = V SB − jXSIS

Receiving bus VSC control

The second part of the control design deals with the bus voltage and the real power flow into

the AC network at the receiving bus terminal. This is again achieved by using two separate PI-

controllers as shown in Fig. 3.20b. Changing the current components, IRP
and IRQ

, within their

limits and as explained for the sending bus VSC allows finding the receiving converter voltage

IR =
∣∣IRPL

+ jIRQL

∣∣
δIR

= δSB + tan−1

(
IRQL

IRPL

)
(3.19)

V R = V RB − jXRIR
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3.4.3 Static Synchronous Compensator (STATCOM)

The STATCOM is a static VAR generator used to control the bus voltage magnitude through

a variable synchronous voltage source. The advantage of the VSC scheme over the controlled

reactance of the SVC is that the compensation is independent of the actual system voltage.

Basic operation

The STATCOM is a device placed at a bus in the power system consisting of a VSC with a

DC side capacitor as shown in Fig. 3.21. Due to the fact that the STATCOM is placed on

high-voltage transmission lines a step-down transformer is required in order to allow the use of

power electronics devices. Applying PWM technique to the VSC allows representation of the

STATCOM with a voltage at fundamental frequency using the following equation for the injected

voltage magnitude:

V = m
VDC

2
√

2nVB

(3.20)

where m is the amplitude modulation index of the VSC, n the transformer turn ratio, VB the

system side base voltage in kV, and VDC the DC link voltage in kV. The phase angle of V is

δ = δB − ϕ

where ϕ is the firing angle of the VSC with respect to the phase angle of the bus voltage (δB).

The voltage magnitude V is controllable in the range6 of V min ≤ V ≤ V max, and the firing angle
6A common voltage range for buses in the electric power system is 90 to 110% of the rated voltage level.
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limits have to be adjusted according to the operating conditions to adhere to power and current

ratings. The converter injects a controllable voltage such that the real component of the current

in the branch keeps the DC voltage at a specified value through exchanging active power with

the DC link. The STATCOM’s main purpose is to exchange reactive power with the AC system

providing the possibility of independent shunt compensation for the line. The injected voltage

can be regulated to produce a reactive current component that will either keep the bus voltage

at a specified value or produced a desired inductive or capacitive VAR request.

Load flow model and algorithm

For steady-state operation the DC link voltage remains constant at a given value. In case of a

lossless DC link the active power supplied by the converter P = Re(V I
∗) satisfies

P = 0. (3.21)

The load flow model implemented assumes that the STATCOM is operated to keep the bus voltage

at a desired level. This allows treatment of the device as an equivalent generator (PV-type bus),

setting the active power injection to zero and letting the load flow algorithm find the required

reactive power QB. After the load flow solution has been found the steady-state quantities can

be computed

I =
(

jQB

VB

)∗

V X = jXT I (3.22)

V = V B + V XT

S = V I
∗

where I is the current into the bus, V XT
is the voltage drop due to the transformer reactance, V

is the injected voltage, and S is the injected power due to the voltage source.

Dynamic model

For transient stability studies the DC voltage dynamics are taken into account as the DC link

capacitor will exchange energy with the system and its voltage will vary. The following equation

describes the model:

CVDC
dVDC

dt
= −P SB. (3.23)
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The relationship between the inverter DC and AC side is obtained by applying PWM technique

to the VSC:

V = V 6 δ = m
VDC

2
√

2nVB

6 (δB − ϕ)

Note that in the above equations the DC voltage and capacitor are expressed in mksA units while

the AC system variables are expressed as per unit quantities. The system side base values SB

and VB are selected as base power and base voltage and all AC variables are normalized using

these base quantities.

Interfacing

The bus voltage V B can be expressed as a function of generator internal voltages EG and the

STATCOM injection voltage V (3.24). Using the controller output and (3.20) to determine the

injected voltage magnitude V leaves the phase angle δ of the injected voltage as unknown. It

depends on the phase angle of the bus voltage δB which is the result of the iterative interfacing

procedure. The interface algorithm can be found in Fig. 3.15 where the expression FACTS has

to be replaced by STATCOM (see the section on interfacing the UPFC for more details, p. 36).

V B = LGEG + LCV C (3.24)

where

LG = (YB − YBB)−1 YBG

LC = − (YB − YBB)−1 YC

V C =
[
V
]

YB =
[
− 1

jXT

]
YC =

[
1

jXT

]
• YBB is the admittance matrix connecting the current to the voltage at the bus,

• YBG is the admittance matrix that gives the current in terms of generator internal voltages,

• YB is the internal admittance matrix which gives currents in terms of the terminal voltage,

and

• YC is the internal admittance matrix which gives currents in terms of the injected voltage.

Basic control design - (almost) decoupled control scheme

The control design involves simultaneous regulation of (i) real power flow to the DC link, and

(ii) bus voltage magnitude or VAR demand. This is achieved by two separate control loops using
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PI-controller as shown in Fig. 3.22 [32]. Changing the current component orthogonal to the bus

voltage will mainly affect the reactive power flow in the branch, which in turn will affect the bus

voltage magnitude. Adjusting the current component in phase with the sending bus voltage will

mainly influence the real power flow in the branch. The controller outputs are fed to a limiter in

order to keep the injected voltage magnitude and converter current within specified limits. The

limited components IPL and IQL and (3.25) are used to compute the injected shunt voltage.

I = |IPL + jIQL|

δI = δB + tan−1

(
IQL

IPL

)
(3.25)

V = V B − jXT I

3.4.4 Static Synchronous Series Compensator (SSSC)

The SSSC is a voltage-source converter used for series compensation applications. Affecting the ef-

fective angle difference between two power system buses through injecting a variable synchronous

voltage allows to increase transfer capabilities and improves transient damping characteristics

independent of the actual line current.

Basic operation

The SSSC is a device placed between two buses in the power system, the sending bus and the

receiving bus, consisting of a VSC with a DC side capacitor (Fig. 3.23). Applying PWM technique

the fundamental frequency model can be found through replacing the VSC by a controlled voltage

source and linking the DC and AC side voltages by
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V = m
VDC

2
√

2nVB

(3.26)

where m is the amplitude modulation index of the VSC, n the transformer turn ratio, VB the

system side base voltage in kV, and VDC the DC link voltage in kV. The phase angle of V is

given by

δ = δB − ϕ

where ϕ is the firing angle of the VSC with respect to the phase angle of the sending bus voltage

δB. The voltage magnitude V and the firing angle ϕ are controllable in the range of 0 ≤ V ≤ V max

and 0 ≤ ϕ ≤ 360◦. The converter injects a controllable voltage such that either the active line

power flow or the line current and the DC voltage are kept at specified values. Additionally, a

line compensation control mode is possible.

Load flow model and algorithm

For steady-state operation the DC link voltage remains constant at its given value. In case of a

lossless DC link the active power supplied to the converter P = Re(V I
∗) satisfies

P = 0. (3.27)

The load flow model implemented assumes that the SSSC is operated in the active power flow

or line reactance compensation mode. The load flow algorithm has been extended to include a



CHAPTER 3. POWER ANALYSIS TOOLBOX 52

procedure to force the line power flow to a specified value. The SSSC is replaced by a controlled

reactance. The computations in the loop outside the conventional NR-LF procedure adjust the

reactance toward a more inductive or capacitive SSSC so that the expected outcome of the next

load flow computation tends toward the desired active power flow. The closer the actual power

flow to the specified value, the smaller the steps taken in changing the reactance. A graphical

representation of the algorithm as used for the SSSC as well as the TCSC is shown in Fig. 3.24.

Once the load flow solution has been found characteristic steady-state quantities can be computed:

V RS = V R − V S

I = −V RS

jX
(3.28)

V = V RS + jXT I

S = V I
∗ (3.29)

where V S , V R, and X are the bus voltages and reactance as found by the load flow algorithm,

respectively. I is the current from the sending bus to the receiving bus, V is the injected voltage,

and S is the injected power due to the converter operation.

Dynamic model

For transient stability studies the DC voltage dynamics have to be taken into account and (3.27)

can no longer be applied as the DC link capacitor will exchange energy with the system. The

DC link voltage will vary according to

CVDC
dVDC

dt
= −P SB. (3.30)

The relationship between the inverter DC and AC side is given by

V = V 6 δ = m
VDC

2
√

2nVB

6 (δS − ϕ)

In the above equations the DC voltage and capacitor are expressed in mksA units while the AC

system variables are expressed as per unit quantities. The system side base values SB and VB

are selected as base power and base voltage and all AC variables are normalized using these base

quantities.
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Figure 3.24: Load flow algorithm for line power flow control of SSSC and TCSC
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Interfacing

In order to find the network solution an iterative approach is applied. The fundamental frequency

model of the SSSC is used (Fig. 3.23). Again, the bus voltages can be expressed as a function

of generator internal voltages EG and the injection voltage V (3.31). As for the FACTS devices

previously presented, the control output and (3.26) determine the injection voltage magnitude V

but the phase angle of the injected voltage, δ, is unknown since it depends on the phase angle of

the bus voltage δS . The algorithm for interfacing can be found in Fig. 3.15 where the expression

FACTS has to be replaced by SSSC (see the section on interfacing the UPFC for more details,

p. 36).

V B = LGEG + LCV C (3.31)

where

LG = (YB − YBB)−1 YBG

LC = − (YB − YBB)−1 YC

V B =

 V S

V R

 YB =

 − 1
jXT

1
jXT

1
jXT

− 1
jXT


V C =

[
V
]

YC =

 − 1
jXT

1
jXT


• YBG is the external admittance matrix that gives currents in terms of generator internal

voltages,

• YBB is the external admittance matrix connecting currents to the voltages at the buses,

• YB is the internal admittance matrix which gives currents in terms of terminal voltages,

and

• YC is the internal admittance matrix which gives currents in terms of injected (controlled)

VSC voltages.

Basic control design - (almost) decoupled control scheme

The SSSC operated in the constant active power (current magnitude) control mode requires

adjusting two voltage components. The component in phase with the current (VP ) to stabilize
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Figure 3.25: SSSC control scheme

the DC link voltage, and the component leading (or lagging) by 90 degrees (VQ) to control the

active power flow (current magnitude). This is achieved through two separate PI-control loops.

The control scheme generating the proper modulation index and firing angle using (3.32) is shown

in Fig. 3.25. Again, a limiter is applied to protect the VSC and power system from high currents

and voltages.

V = |VPL + jVQL| (3.32)

δ = δS − δI − tan−1

(
VQL

VPL

)
The line compensation control mode can be achieved by adjusting the injected VQ-component

according to the given transmission line reactance value XL and the desired compensation ratio k

VQ = k XL

∣∣I∣∣ (3.33)

3.4.5 Static VAR Compensator (SVC)

The SVC is a static VAR generator mainly used to control the bus voltage magnitude through

a variable reactive impedance. The following will describe the operational characteristics and

modeling of the type of SVC implemented for power system studies.

Basic operation

Different types of SVCs exist. The chosen SVC structure is the fixed capacitor - thyristor con-

trolled reactor type as shown in Fig. 3.26. The SVC consists of a capacitor, a thyristor controlled

reactor, and a transformer connecting the SVC to the high voltage power system. By modifying

the thyristor firing angle α the current flow through the inductor can be adjusted. The firing

angle limits of 90◦ ≤ α ≤ 180◦ translate into an inductor current ranging from maximum to



CHAPTER 3. POWER ANALYSIS TOOLBOX 56

L

CSwitching
Logic

VB

I

α

n:1
XT

δB

(a) Dynamic model

Look-Up-
Table

VB

I

α B(α )

XT

1

1 + sT

B

180°

90°

(b) Equivalent model

Figure 3.26: Modeling the SVC

zero yielding an overall SVC reactance varying from inductive to capacitive. Assuming sinusoidal

voltages allows finding of the load flow as well as transient stability models as presented next.

Load flow model and algorithm

For steady-state operation the SVC is assumed to keep the bus voltage at a specified value. There-

fore, the SVC can be represented as a generator (generator bus) where the injected active power

is set to zero and the required reactive power injection will be found through the conventional

load flow algorithm. After the load flow has been solved the steady-state quantities of interest

can be computed:

I =
(

jQB

VB

)∗

V = V B + jXT I (3.34)

jB = − I

V

B(α) =
2α− sin(2α)− π(2− XL

XC
)

πXL

where QB and V B are the injected reactive power and bus voltage as found by the load flow

algorithm, I is the current into the bus, V is the voltage across the SVC, XT is the transformer

reactance, and B is the equivalent SVC admittance. The last expression given in (3.34) is the

result of a Fourier analysis of the current [46]. The current is a function of the sinusoidal voltage
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Figure 3.27: SVC characteristics

and the firing angle. Knowing the admittance the firing angle can be found by solving the

nonlinear equation relating the firing angle and fundamental impedance values of reactor XL and

capacitor XC to the equivalent admittance. Typical SVC relationships between the firing angle

and the resulting reactance and admittance as well as the reactive power injection for a ±10%

voltage range are shown in Fig. 3.27a-c. Chosen SVC data are XC = 1 pu and XL = 0.55XC

(XT = 0). The critical firing angle αCR belongs to the resonance point where B(α = αCR) = 0.

Due to the discontinuity in the reactance the admittance will be chosen as the interfacing variable.

The two marked regions in the Q − V plot of Fig. 3.27 represent the typical operating zones of

the SVC: capacitive if the bus voltage needs to be supported and inductive in case the actual bus

voltage is above the chosen reference value (1 pu in this case).

Dynamic model

The model used for transient stability analysis is given in Fig. 3.26 [11]. The firing angle is the

input to the model and the actual admittance used to represent the SVC is found through a linear

interpolation in a pre-computed look-up table using XL, XC , and 90◦ ≤ α ≤ 180◦. Also, the

dynamics of the thyristor firing delay are approximated by a first order delay with a default time

constant of T = 3ms. This resembles the average delay of today’s SVCs as presented in [32].

Interfacing

The network solution is found using the SVC admittance value and transformer reactance as

interfacing variables. The expression for the bus voltage depending on the admittance matrix
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and internal generator voltages is

V B = LGEG (3.35)

where

LG = (YB − YBB)−1 YBG

YB =

[
−j

( −B
XT

B − 1
XT

)]
• YBB is the admittance matrix connecting the current to the voltages at the bus,

• YBG is the admittance matrix which gives the current in terms of generator internal voltages,

and

• YB is the internal admittance matrix which gives currents in terms of terminal voltages.

As for FACTS devices with voltage-source converters an algorithm based on functional iterations

is performed by computing new values for the bus voltage as long as two consecutive solutions

deviate from each other more than a chosen limit.

Basic control design

The SVC basic control is based on the automatic voltage mode and this can be achieved by

controlling the firing angle within its limits using a PI-controller as shown in Fig. 3.28. The

adjustment of the reference voltage by the additional voltage drop due to XSL is necessary to

avoid excessive controller reaction caused by small voltage deviations [46], [11].

3.4.6 Thyristor Controlled Series Capacitor (TCSC)

The TCSC is a device placed on transmission lines rather than being connected in shunt at a

single power system bus, e.g., like the SVC. The series connection scheme allows the power flow
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to be influenced through changing the effective admittance linking two buses, and is a method of

improving transient stability limits and increasing transfer capabilities.

Basic operation

The typical structure of a TCSC is the same as the one discussed for the SVC and is shown

in Fig. 3.29 [32]. By varying the firing angle the overall admittance is changed and, due to the

series connection with the transmission line, effects the total admittance between the two power

system buses. The transmitted power is inversely proportional to the transfer reactance resulting

in the possibility to increase transfer limits through compensation. Assuming a 50 to 75% series

compensation the steady-state power flow can be adjusted from twice to four times the original

value. Nevertheless, a practical limit of a maximum compensation level of 70% applies due to

uncontrollable variations in power flow caused by otherwise small changes in bus voltages.

Different expressions for the equivalent admittance can be found in the literature [11]. They

depend on the choice of voltage (3.36) or current (3.37) as an ideal sine wave. A comparison of

both expressions using XC = 1 pu, XL = 0.1XC is shown in Fig. 3.30a and b. As can be seen,

(3.37) is only valid for the capacitive operating range. Both have been used in power system

studies applying different limits to the range of operation. The absolute minimum and maximum

firing angle of 90◦ and 180◦ have to be observed and the resonant point of B = 0 at the critical

firing angle αCR has to be avoided. This is done by setting the firing angle range to 90◦ ≤
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Figure 3.30: TCSC characteristics: solid - sinusoidal voltage, dashed - sinusoidal current

α ≤ αCR−∆α and αCR +∆α ≤ α ≤ 180◦. For (3.37), which is seen as the more accurate model,

only αCR + ∆α ≤ α ≤ 180◦ is acceptable.

B(α) =
2α− sin(2α)− π(2− XL

XC
)

πXL
(3.36)

(3.37)

B(α) = − 1
XC

π(k4
x − 2k2

x + 1) cos kx(π − α)

πk4
x cos(kx(π − α))− π cos(kx(π − α))− 2k4

xα cos(kx(π − α))+

+2αk2
x cos(kx(π − α)− k4

x sin(2α) cos(kx(π − α)) + k2
x sin(2α) cos(kx(π − α))−

−4k3
x cos 2(α) sin(kx(π − α))− 4k4

x cos(α) sin(α) cos(kx(π − α))

kx = +
√

XC

XL

Also, the inductive operation region results in a high harmonic distortion which is undesirable in

power systems. Therefore, this range is only permitted for a short period of time for transient

damping applications.

Load flow model and algorithm

For steady-state operation the TCSC is assumed to either keep the active line power flow constant

or compensate the line reactance. The load flow algorithm has been extended by an outer-loop

adjusting the effective TCSC reactance (see also section 3.4.4 for the implementation of the SSSC
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load flow algorithm). The change in the reactance is made toward a more inductive or capacitive

TCSC in order to drive the expected outcome of the next load flow computation toward the

desired active power flow. The closer the actual power flow to the specified value the smaller the

steps taken in changing the reactance. Once the load flow solution has been found characteristic

steady-state quantities can be computed:

V = V S − V R

I =
V

jX
(3.38)

B = − 1
X

where V S , V R, and X are the bus voltages and reactance as found by the load flow algorithm,

respectively.

Dynamic model

The equivalent model used for transient studies is given in Fig. 3.31. The firing angle is the input

signal, a look-up-table is used to find the equivalent admittance value, and, as approximation to

the firing delay, a first order time-delay with a default time constant of T = 3 ms is utilized.

Interfacing

The network solution for the TCSC using the equivalent admittance as interfacing variable is

found by using

V B = LGEG (3.39)
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where

LG = (YB − YBB)−1 YBG

YB =

 −jB jB

jB −jB


• YBB is the admittance matrix connecting currents to the voltages at the bus,

• YBG is the admittance matrix that gives currents in terms of generator internal voltages,

and

• YB is the internal admittance matrix which gives currents in terms of terminal voltages.

The algorithm for interfacing is equivalent to the one descript for the SVC.

Basic control design

The basic control adjusts the compensation voltage across the TCSC to keep the active line

power flow or current at its specified value. A PI-controller is used to guarantee steady-state

error-free control obeying the previously mentioned limits concerning the firing angle (Fig. 3.32).

Additionally, the TCSC can be controlled to partially compensate the transmission line reactance

at a fixed ratio.
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Chapter 4

Transient stability enhancement

using FACTS devices

4.1 Introduction

Guaranteeing the stability in case of contingencies has been of interest in the last decades and will

be a main issue in a deregulated environment. FACTS devices increase the controllability of power

systems but care must nevertheless be taken during the design process. The potential usefulness

of any control scheme (see for example [21], p. 2.4-5) requires that the effects it produces upon

system dynamics be significant, consistently predictable, and visible to the controller. Therefore,

appropriate damping control requires the designer to include concerns about the choice of the

FACTS device, the most effective measurement to be utilized as input signal, the damping scheme,

the design strategy, and evaluation of the resulting overall system performance. The operation of

damping controllers should also be restricted to the minimum time necessary in order to minimize

the risk of adverse side effects. Damping control schemes are designed as supplemental control

to the fundamental control task (referred to as basic control in this work). This allows the basic

control to supervise the damping controller action and to avoid harmful operating conditions,

especially during and right after a fault occurred in the system.

A broad range of design techniques is available. Linear analysis has been widely used due

to its advantage of a well-established mathematical background [46], [91]-[95]. Nevertheless, it

targets specific operating conditions making it prone to changes in its environment. Different

approaches toward a robust control design have been suggested to increase the positive damping
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effect over a broader range of operating conditions [10], [84], [85], and [86]. Nonlinear methods

such as a variable structure power system stabilizer [45], [83], a method of coordinated active

and reactive power control based on a Lyapunov function [16], and the transient energy function

approach in [26] and [51] have been reported. Methods avoiding specific mathematical models

and operating conditions include neural networks and fuzzy logic technology. The following will

concentrate on analysis and design of damping controllers using the UPFC as an actuator and

focusing on fuzzy logic as a design tool for a damping control scheme. Fundamentals concerning

its applications to power systems will be presented in the next sections.

4.2 UPFC as an actuator

In addition to the previously discussed capability of the UPFC to control key elements in the

power system, the UPFC can be used to improve the transient characteristic. Several authors

have investigated the effectiveness of the UPFC in damping power system oscillations applying

different schemes including modulation of injected voltage magnitudes, relative phase angles, and

reference values for power flows. [93] applied a supplementary signal based on generator speed

deviation ∆ω to augment modulation indices and phase angles of the injected voltages. The

UPFC could improve the power oscillation damping of the single-machine infinite bus power

system. The damping controller used was of lead-lag type with a transfer function as shown in

Fig. 4.1. The fuzzy design in [49] also focused on a single-machine infinite bus power system using

machine speed as an input signal but exploring the influence of damping signals applied through a

UPFC by means of a fuzzy scheme. The speed signal was used to compute an acceleration signal

and both signals were then utilized to damp swings. The fuzzy logic approach in [64] extends this

approach by replacing the measurement with the local line power flow. [74] applied fuzzy control

to the superconducting magnetic energy storage (SMES) and SSSC. The SMES was controlled

through combined active and reactive power injections at the bus to oppose power swings. The

SSSC control is based on the Direct Lyapunov Stability method. In [58] TS-fuzzy schemes of PD-

and PI-type were suggested as basic controllers using deviations in line power flows as inputs. The
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output signals for the two series voltage components were linear combinations of the two input

signals and the product of the two. This resulted in a nonlinear control scheme and was judged

by the authors to be superior to conventional PI-type controllers. Transient stability of local

and interarea modes was examined using linear combinations of generator speed deviations to

augment the local power deviation input signal. The parameter tuning process for fuzzy schemes

has mainly been done by a trial-and-error approach but could be improved by adaptive methods

[96] or learning through interaction with the power system [48]. Techniques like learning automata

and reinforcement learning have been applied in small-scale but highly nonlinear systems [7], [97].

In [48] an extension to parameter tuning of Hiyama’s fuzzy damping scheme as applied to static

phase shifters was introduced. Based on small system disturbances (noise) the parameters were

continually adjusted until no improvements in a chosen performance criterion could be achieved.

This dissertation proposes a fuzzy logic damping controller based on the fuzzy scheme as

originally proposed by Hiyama for the PSS [35] and SVC [39] for the UPFC. The fundamentals

of the scheme have also been discussed with respect to robust, near time-optimal control in [65].

The methods differ in either the input signal chosen, controlled device, the determination of the

current system state, or the fuzzy method applied. Also, by applying and testing the scheme

to more general power systems, a broader range of questions concerning the applicability and

possible enhancement in transient stability is investigated.

4.3 Fundamentals of fuzzy systems - Takagi-Sugeno-Kang fuzzy

logic

Important information for practical systems often comes from two very different resources: The

first is a mathematical model that is derived according to physical laws and supported by sensor

measurements; the second comes from human experts who describe their knowledge using natural

language. Fuzzy logic provides a theory to combine these resources into a single framework. Three

different types of fuzzy systems can be found in the literature [96]. In the following only the system

known as the Takagi-Sugeno-Kang (TSK) fuzzy system will be explained as it will be the basis

for the damping control scheme. In summary, TSK-systems are a collection of IF-THEN rules in

the form of

IF Input X1 is low and · · · and Input Xn is normal,
THEN the voltage vr applied through the FACTS device is vr = ar

0+ar
1X1+· · ·+ar

nXn
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where the words “low” and “normal” have a specified meaning, ai are constants, and r denotes the

rule under consideration. The meaning is expressed through a continuous membership function.1

Examples of such functions are given in Fig. 4.2. The membership functions assign each crisp

measurement (horizontal axis) a fuzzy value, the grade or truth content (vertical axis), mr
Xi

.

Inspecting the fuzzy rule two important properties of TSK-systems can be seen: The IF part

describing the input signal or measurement in the antecedent part of the rule takes on a fuzzy

value. The THEN part of the rule, the consequence, is a simple mathematical formula, a linear

combination of the inputs. The combination of nr rules into a single system is derived through

finding the weighted average of the values in the THEN parts

v =
∑nr

r=1 vrwr∑nr
r=1 wr

(4.1)

where the weights wr are computed as

wr =
n∏

i=1

mr
Xi

(4.2)

The principle layout of a TSK fuzzy system is shown in Fig. 4.3.

When compared to other fuzzy system approaches the usage of a mathematical formula

rather than words in a natural language in the THEN part results in less freedom in the system

description and it may not represent human knowledge in a natural framework. Nevertheless,

the existence of a simple mathematical relationship for damping power oscillations will be shown

in the next sections. A fact in favor of a simple relationship is that real-world applications using
1Note: Only a single set of membership functions is implied here for reasons of simplicity. In practical applica-

tions it may be useful to define a set of membership functions for each input individually.
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signal processors to compute the controller signal rather than sophisticated computers require

the restriction to basic mathematical functions as well as a limited number of calculation steps.

4.4 Control Scheme

4.4.1 Damping using excitation systems

The fuzzy PSS control scheme was originally proposed by Hiyama in [35] and later modified in

[36]. The supplementary stabilizing signal was found through a rule-base and applied via a fast-

acting exciter. The measured generator speed and its computed derivative were used as input

signals. These two input signals form a 2-dimensional plane referred to as the phase plane.2 The

origin of the phase plane represents the steady-state. The actual measurement was used to find

the coordinates in the phase plane and was denoted as the state of the generator. Whenever the

state of the generator is not in the origin some control action has to be taken to drive it back to

the equilibrium point as soon as possible.

The damping signal can take on limited positive and negative values in order to decelerate

or accelerate the generator. To find the appropriate signal the phase plane is divided into two

sectors and the desired control action for a few chosen sample points examined. Generalization

of the results to the entire phase plane yields the fuzzy damping scheme. Three sample points in

sector I are shown in Fig. 4.4 and their related control signals U are described in the following

(Umax is the applied limit, G is a gain limited to 0 ≤ G ≤ 1, and S represents the sign of the

damping signal):

1. Rule: Slight deceleration control - in form of a positive damping signal in order to increase
2The term phase plane is used throughout the text to designate the input information provided by signal pairs.

It shall be explicitly pointed out that it only shares its name with the “Phase plane analysis” method, which is a
graphical method for studying second-order systems. The phase plane as used here is not limited by the order of
the system under study.
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the electric output power of the generator - as the speed is almost at steady-state but the

acceleration is high, U = SGUmax, S > 0, G is low.

2. Rule: Strong deceleration control as the speed deviation and acceleration are high above

steady-state, U = SGUmax, S > 0, G is high.

3. Rule: Slight deceleration control as the speed is above steady-state but the acceleration is

already negative, U = SGUmax, S > 0, G is low.

4. Rule: In sector II all of the above described situations require the opposite damping ac-

tion. Therefore, replacing the control action of deceleration with acceleration yields the

appropriate rules: U = SGUmax, S < 0.

These rules are extended to the entire state plane by membership functions. The membership

functions describe the sectors in the state plane leading to the proper deceleration or acceleration

control signal.

4.4.2 Damping through devices within the transmission system

The direct relationship of speed and its derivative to the damping signal is lost whenever the

damping device with its controls is not placed at a generator but within the transmission system.

Nevertheless, a closely related control strategy can be applied. To understand the modified idea

a simplified two area power system is used as an example. Each of the two areas may represent a
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collection of generating and consuming elements. The two areas are connected by a transmission

line. The controlled device is placed at the mid-point of the line and its damping control scheme

is used to augment the active power flow on the line. In case of a system disturbance, e.g., short

circuit, large load changes, the generators’ electric output powers will undergo large changes.

These changes depend on the disturbance location and severity. Conventional power system

stabilizers such as these described in the previous section are often unable to observe and control

swings involving different power system areas and additional measures must therefore be taken.

The concept of damping control using a device on a transmission line is to force an increased

or decreased active power flow on the line. The augmented power flow should be such that the

resulting transmitted active power opposes the speed deviations in both areas. As a consequence

the damping of the transients will be improved and the post-disturbance equilibrium point ap-

proached faster. The scheme as described above with an associated damping signal computed

by U = SGUmax requires some justification in finding the appropriate sign function S. The

necessary steps to determine the system state in a state plane and the fuzzy damping controller

are described in the next sections.

4.5 Input signal conditioning

The process of finding the desired input information requires some signal conditioning. Necessary

steps include removing offset components and integration as shown in Fig. 4.5. The input signals

to the fuzzy controller are derived from the total active power flow Pt (see also the case study of

the Two area - Four machine system, Fig. 5.1) at the UPFC sending bus. The damping scheme

uses the power flow deviation from its steady-state value, ∆P , to compute the input signals:

changes in energy, ∆E, and the changes in its integral, ∆I. Therefore, the fuzzy controller is a

two-input-one-output controller. The input signals indicate a required change in transmitted line

power flow and have to be driven back to zero for a new steady-state by the damping controller.
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4.6 Fuzzy damping control

Using the TSK-fuzzy system as described earlier allows direct mapping of the sectors to the

appropriate damping signal and will be derived in the following. The damping scheme (Fig. 4.6)

utilizes the signals for changes in energy flow ∆E and its integral ∆I to compute the actual

system state. The state is defined as the point p(D,Θ), in the ∆I −K∆E∆E plane (Fig. 4.7). D

and Θ are the polar coordinates of the state p. K∆E is a scaling coefficient. The state plane’s

origin is the desired steady-state operating point. The actual state of the system and two simple

fuzzy logic control rules are used to drive the system back to the equilibrium point. The system’s

state plane is divided into two overlapping sectors, sector I and sector II as shown in Fig. 4.7.

In the first quadrant, part of sector I, the controller output should result in a positive damping

signal increasing the line power flow. The damping signal should be negative in the third quadrant

decreasing the line power flow. The transitions between these two operating modes take place in

the second and fourth quadrant. This transition is done gradually as determined by membership

functions, mP (Θ) and mN (Θ), which overlap by angle α (Fig. 4.8). Therefore, the two rules
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applied to find the controller signal sign S are

1. IF Θ is Positive THEN S1 = a1
0 = 1.

2. IF Θ is Negative THEN S2 = a2
0 = −1.

where both rules are characterized by

a1, 2
1,··· = 0 (4.3)

Note, this choice leads to a fuzzification process that is known as singleton fuzzification [96]. Ob-

serving that both membership functions as defined sum to one (Fig. 4.8) reduces the computations

of the weights (4.2) to

wr =
1∏

i=1

mr
Xi

= mr
Θ (4.4)

The output signal using the weighted average method (4.1) yields

S = m1
Θ −m2

Θ = mP (Θ)−mN (Θ) = 2
(

mP (Θ)− 1
2

)
(4.5)

The stabilizer’s gain may vary according to 0 ≤ G ≤ 1 based on the distance from the origin.

Hiyama suggested a linear dependency for the gain adjustment

G =
D

Dr
(4.6)

where D is the actual distance from the origin, and Dr is a design parameter. Dr was linearly

increased over time as soon as the power system was close to a new steady-state to enforce reduced

damping signals. The overall damping performance may suffer when the power system operating

conditions change. A new gain adjustment based on the system disturbance severity is proposed

here by using the following to find the proper gain

G =


(

D
kDDdist

)2
∀ D ≤ kDDdist

1.0 ∀ D > kDDdist

(4.7)
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The gain factor G, determined by D and kDDdist, varies between 0 and 1 according to the

state of the power system. G becomes zero whenever the system is close to a new steady-state.

To improve the flexibility of the damping controller the gain adjustment replacing 4.6 is based on

a scheme that adjusts to the severity of the disturbance. The distance measure Ddist, which can

be represented by a circle in the system state plane (see Fig. 4.7), is the distance measured at the

time of fault clearance and kD is a design parameter. The signal SG varies between -1 and +1

depending on Θ and D. The actual damping controller signal PD, which is of form U = SGUmax

as introduced above, is determined between the two specified bounds, the maximum positive line

flow offset PMP > 0 and the maximum negative line flow offset PMN < 0, by:

PD =

 SGPMP ∀ S ≥ 0

−SGPMN ∀ S < 0
(4.8)

To avoid unwanted control action a trigger event for the damping scheme has to be defined. A list

of such events includes sudden changes in voltages, power flows, and currents, e.g., ∆P > ∆PL.

The damping signal is applied to the series converter side through the modulation of the real

power reference signal as shown in the UPFC series converter control scheme (Fig. 3.16, p. 39).

The calibration of the fuzzy damping scheme will be done through optimization of the chosen

performance criteria

C =
∑

i

∫ T

0
|∆ωi| dt (4.9)

where ∆ωi is the speed deviation of generator i. The cost function C evaluates the transient

swings of the synchronous machines in the power system and has to be minimized.

4.7 Discussion

Both damping schemes as introduced above are two-input-single-output controllers. The

input signal-pairs are utilized to infer the correct damping action. A closer look at these signal-

pairs reveals that the swings of the resulting power system state about the desired steady-state

point have the same frequency but different phase information. The ∆E-∆I information lags the

∆P -∆E (∆ω̇-∆ω) state by roughly one quarter of a cycle. This relationship requires a rotated

switching line to yield the same control action and has been verified in simulations (see the Two

area-Four machine case study, Damping - dynamic stability, p. 79). In some cases the addition

of ∆I signal to the ∆P -∆E information as third input dimension has been suggested to avoid
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large deviation of the postfault power system from the prefault conditions [37]. Therefore, the

∆E-∆I signal-pair has been chosen for the UPFC damping scheme.

The TSK-scheme as described above differs in one point from the fuzzy schemes using the

general fuzzy logic concept of fuzzification-inference-defuzzification: The gain in the TSK-scheme

is determined by the distance from the origin independent of the phase angle of the power system

state whereas the general fuzzy logic scheme uses both the distance and the angle information.

The differences in fuzzy consequence and damping controller behavior can also be found in the

Two area-four machine system case study. The fuzzy controller is denoted as CM-fuzzy scheme

due the center-average-method used in the defuzzification step.

The choice of active power as input signal has been made due to its direct relationship to

the power imbalance during transients. Other measurements at the UPFC site contain similar

information and have been used for the design of damping controls. For example, in [16] the

bus frequency has been utilized and applied to superconducting magnetic energy storage (SMES)

devices as actuators.

Extending the bus frequency measurement to both UPFC buses reveals the close relationship

to another damping scheme found in the literature. The line power flow measurement can be

replaced by the fictitious power flow between the sending and receiving UPFC buses due to the

series transformer reactance as it is part of the injection model used to interface the UPFC:

PSR = VSVR
XSE

sin(δS − δR). The deviations in power flow are related to changes in bus frequencies

by ṖSR ' VSVR
XSE

cos(δS − δR)d(δS−δR)
dt . Therefore both signals, the change in power flow and

frequency difference, contain information about transients and can be used to infer the required

damping signal. The significance of the difference in bus frequencies has been found in both [67]

and [50] by using the transient energy function approach (TEF). The TEF control law is given

by

IF d(δS−δR)
dt < 0 THEN ϕSE = −π

2 − δSR

IF d(δS−δR)
dt ≥ 0 THEN ϕSE = +π

2 − δSR

and determines the injected series voltage for damping control. The damping law has been

summarized by [67] as “The active power injection by the controllable components must oppose the

growth of the active power through the transmission line.” The switching law can be implemented

using relational operators or by the TSK-scheme with its input-signal conditioning unit and fuzzy

switching logic applied to the ∆P -∆E signal pair. A study comparing both damping controllers

can be found in the New England - New York power system case study, section 5.3.4, p. 96.
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Chapter 5

Power system case studies

5.1 Stability of the Two Area - Four Machine power system

The proposed damping control scheme has been applied to the Two area - Four machine power

system (Fig. 5.1) that is prone to instability after fault occurrence. This benchmark system has

been intensively used to examine oscillations between two weakly linked areas (see for example

[46], data is given in appendix C). The 230 km interconnecting tie-lines carry 400 MW from

area 1 into area 2 during nominal operating conditions. After a 100 ms 3-phase fault in area 1

at bus 3, the line power flow starts oscillating. The UPFC is placed at bus 101 on one of the

transmission lines to bus 13 in order to support the voltage at the bus and to control the active

and reactive line power flows. The power system model using PAT’s block library is shown in

Fig. 5.2.

UPFC

~~

~

1

2

10 20

~

3 101

102

13 120 110

4 14

11

12

Generator
1

Generator
2

Generator
4

Generator
3C 3 C 13

Area 1 Area 2

C 101

|V|
P t

P,Q

Vdc

Figure 5.1: Two area - Four machine power system
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Figure 5.2: Simulink model of the Two area - Four machine system including UPFC

The placement of the UPFC is based on two considerations. First, for its basic operation, the

possible steady-state stability improvement is of interest, and secondly, the optimal placement

for disturbance measurement and damping. In the next section a brief discussion of the load flow

related studies including steady-state voltage stability will be given followed by transient stability

studies evaluating the effect of the fuzzy damping scheme.

5.1.1 Load flow and voltage stability

The shunt compensation possibility can improve the overall voltage stability of the power system

within its specified power rating. The voltages of the power system both with and without the

UPFC as a function of the load power ratio are shown in Fig. 5.3. The necessary shunt VAR

compensation in case of the applied UPFC is given in Fig. 5.4a. Whenever the chosen limit of

320 MVA is violated the reference voltage for the sending bus is reduced by a small amount

(0.5%) until a solution within the rating is found. Note that the power ratio of 1 pu refers to

the condition as given as case (a) in Table 5.2. The sudden steps in some of the bus voltages are

caused by the tap changers at the load buses. Also, the buses with constant voltage belong to
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Table 5.1: Two area system: Injected series voltages
VSE pu 0.005 0.010 0.025 0.050 0.100 0.150
ϕSE deg 0 10 · · · · · · 350 360

the generators (1.01 pu1 and 1.03 pu, respectively). The UPFC sending bus voltage is set to 1 pu

in the beginning. When the power rating is violated the voltage rapidly drops until the load flow

fails to converge. The overall loading could be improved from 1.18 pu to 1.26 pu resulting in an

increase of 6.8%. During the dynamic stability study part of the necessary shunt compensation

for a voltage of 1 pu will be supplied from a switched capacitor bank of 160 MVA, leaving the

UPFC to compensate for mostly post-disturbance VAR demands. Besides increasing steady-state

stability, the installation at the mid-point of the long distance transmission line is favorable due

to the possibility of improved system damping widely independent of operating conditions [46].

Additional investigations regarding the load flow characteristics of the system including the

UPFC are concerned with the range of receiving voltage magnitude, converter ratings, and active

and reactive line flows as function of the injected series voltage. Load flow computations using

the combinations of injected magnitude and relative angle as given in Table 5.1 were performed.

Fig. 5.4b shows that the sending bus can be stabilized at the desired value, but only at the

cost of extreme voltage deviations on the receiving side. Such negative and limiting effects should

be considered when designing a control scheme for the UPFC.
1System base power SB = 100MV A
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Figure 5.4: Two area system: UPFC load flow characteristics

Furthermore, the shunt and series converter worst case interactions with the power system

have been recorded (Fig. 5.5) for analysis of possible converter ratings using a capacitor bank

at the sending bus of 160 MVA. A rating of 160 MVA for both converters (allowing the series

converter as a backup shunt compensator) seems satisfactory for all expected operating conditions.

More details of the interactions as a function of the two parameters, voltage magnitude and

relative angle, are given in Fig. 5.6. It is worthwhile to note that the reactive compensation as

a major factor concerning the shunt rating can clearly be seen. The maximum series converter

interaction is also determined by the reactive part but varies muss less due to an increased active

power influence.

The active and reactive power flows for the chosen voltages are depicted in Fig. 5.7a. Addi-

tionally, the same study was performed in the time domain using the Simulink MDL-case file. For

every magnitude the angle was uniformly ramped over the 360◦ range. The total process was set

to complete in 170 seconds. As can been seen, the results are in agreement with each other. The

differences are caused by system dynamics. Though existent, the dynamic process of increasing

the injected voltage magnitude to the next level at an injected relative angle of 0◦ cannot be seen

at this scale. In the case of the two area system the transients are too small in magnitude and

decay too fast to be observed. Fig. 5.7b presents the resulting line power flow differently from
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Figure 5.7: Two area system: Active and reactive line flows

Fig. 5.7a to highlight the almost 90◦ phase rotation between active and reactive power flow.

The basic series control scheme makes use of the property of almost decoupled active and

reactive line power flow control via the voltage components VP and VQ. The influence of changing

one of the two components at a time has been studied and the result is depicted in Fig. 5.8. The

arrows denote the changes in line power flows by increasing either VP (ranging from -0.15 pu to

0.15 pu) or VQ (ranging from -0.05 pu to 0.05 pu).

5.1.2 Damping - dynamic stability

In order to show the usefulness and robustness of the proposed control scheme, various operating

conditions were simulated. Also, the scheme proposed here has been compared to the fuzzy

scheme presented in [80] (referred to as CM-fuzzy method). Both the active power that each

interconnecting tie-line carries from area 1 to area 2 during pre-fault operation as well as the

MVA rating of the capacitor bank at bus 101 are shown in Table 5.2. The capacitor bank is

used to maintain the sending bus steady-state voltage magnitude of 1 pu which allows the UPFC

shunt rating to be fully utilized for transient control. The fuzzy controllers are applied to the

series converter side. Both fuzzy damping controllers were designed for operating condition (a).
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Figure 5.8: Two area system: Line flows as controlled by series VSC control scheme

The simulation results for the relative machine angle between machine 1 and 3 (δ1−3) in Fig. 5.9a

show that the damping of the swings could be increased. The same improvement was observed

for the other two operating conditions. Both input-signal pairs, ∆P -∆E (CM-scheme) and ∆E-

∆I (TSK-scheme), have been used in the case study to demonstrate their abilities in damping

transients.

A closer look at the first seconds of case (a) is depicted in Fig. 5.9b by comparing the swings

for the six cases ranging from no PSS to PSS+UPFC+fuzzy-damping control. It is interesting to

note that the UPFC without damping control decreases stability during this initial phase before

its damping becomes eventually better than without the UPFC installed. An observation that

has been found by several researchers, e.g., [91]. The supplementary control signal for case (a)

is shown in Fig. 5.10 and has also been added to the fuzzy consequence surfaces in Fig. 5.11.

The scheme and its tuned parameters result in a primarily bang-bang control behavior during

the initial transient period. Also, the proposed gain adjustment method works satisfactorily. It

reduces the control effort accordingly for a smooth transition from transient stability control to a

small-signal control until it turns of the damping control completely. The advantage of the TSK

scheme over the CM-scheme is that the same good damping can be achieved with both reduced

amount and less complex computations. The TSK scheme was also compared to the linear gain

scheduling scheme and proved to reduce the control effort after the initial transient period with
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Table 5.2: Two area system: Operating conditions (values in MW and MVA)
case line line load load capacitor

101-13 102-13 bus 4 bus 14 bank 101
a.) 232 160 976 1767 160
b.) 24 160 1176 1567 80
c.) -232 -160 1767 976 160

Table 5.3: Two area system: Interarea mode for different system configurations
system interarea damping expected settling

configuration mode % time t2% (s)
No PSS 0.160±j3.398 -4.8 -

PSS pre-fault -0.282±j3.360 8.4 14
PSS post -0.085±j2.719 3.1 46

UPFC pre-fault -0.568±j3.539 15.8 7.5
UPFC post -0.297±j2.745 10.7 13

TSK pre-fault -0.579±j3.546 16.1 6.5
TSK post -0.295±j2.748 10.7 13

either better or similar overall damping of the angle swings. The maximum values for the injected

voltage components in phase and perpendicular to the sending bus voltage were set to 0.3 pu and

0.15 pu, respectively. Those values allow to force the desired line power flow without excessive

stress on the system due to the short transient period. Of major concern during the first few

seconds is the converter current. The short time overload capacity for case (a) requires shunt

currents of up to 2.5 pu (nominal is 1.6 pu) whereas the series converter rating is satisfactory.

Linear analysis has been used to evaluate the small signal characteristics of system configura-

tions at operating condition (a). The dominant interarea modes for various system configurations

are given in Table 5.3. The unstable eigenvalue pair (pre-fault case - before the line is removed)

is shifted by the PSSs as applied to the two fast exciters (one in each area) to a damping of 3%

(post-fault case - one line between bus 3 and 101 removed). The UPFC further improves the

damping to 10%. These eigenvalues match the transient response in expected damping and fre-

quency very well, only the damping value for the UPFC with TSK-fuzzy damping scheme seems

to be underestimated. The fuzzy control was replaced by a second-order function to approximate

the small-signal behavior, a combination of a washout, gain, and first-order filter. Though the

resulting damping coefficient does not give a close match for the large disturbance it resembles

the system behavior in the small at the end of the swings.
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Figure 5.9: Relative machine angles δ1−3 for case (a)
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5.2 Meshed power system

5.2.1 Investigating the influence of the UPFCs using local signals

The second case study involves a much more interconnected power system. The system has been

taken from [8], [31] and is shown in Fig. 5.12. It consists of 4 generators, 3 loads, 20 buses,

and 3 UPFCs. The system has some interesting characteristics due to its relatively high degree

of interconnections and will therefore be referred to as the Meshed power system2 (MPS) in the

following. The focus will be on the dynamics of the system after a large disturbance has occurred.

Three UPFCs have been placed throughout the system to allow a high degree of flexibility in

power flow control and to study the coordination of these in order to ensure a broad range of

goals. Some of these are: (a) keep MVA flows on the lines within limits, (b) in case of overloads

use the most effective UPFC, and (c) automatically reconfigure control parameters after outages.

The control schemes used include the basic ability of the UPFCs to control sending bus voltage

magnitude, real and reactive power flow at the receiving bus, and a multi-input-multi-output

(MIMO) stabilizer for each UPFC using local inputs. The MIMO stabilizer was designed using

the state space representation of the full power system to ensure overall stability. The signal
2The system has been modeled within PAT to result in a dynamic response as close as possible to the cited

one. No attempt was made to improve the transient characteristic by either redesigning basic controls or changing
device ratings.
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Table 5.4: MPS: UPFCs’ influence on active line flows (in %)
Bus UPFC 1 UPFC 2 UPFC 3

From To (5 - 6) (9 - 10) (15 - 16)
1 6 7 100 - -
2 7 9 - 100 -
3 7 19 - -100 100
4 10 11 - 100 -
5 11 12 - 34.21 26.32
6 14 12 - -34.21 -26.32
7 14 15 - - 100
8 14 19 - 17.11 -36.84
9 14 19 - 17.11 -36.84

10 17 7 -100 - 100
11 16 17 - - 50
12 16 17 - - 50
13 18 5 100 - -
14 18 17 -100 - -
15 11 19 - 65.79 -26.32

generated by the transient damping controllers are applied at the output of the basic controllers

and fed to the converter control to generate appropriate firing signals (Note that the TSK-scheme

applies its signal at the input of the basic control to allow device limitations to be ensured.)

The UPFCs’ influence on active power flows using the modified generation shift factors as

defined in [8] are given in Table 5.4. The entries in the table give the change in active line flows

due to a change in UPFCs’ controlled active line powers and have been scaled to the changes in

the reference commands.

Two interesting conclusions have been drawn by analyzing a 100 ms 3-phase short circuit at

the midpoint of line 19-11 (reclosing followed 220 ms after the fault had been cleared). Firstly,

due to the high degree of interconnectivity and its inherent good damping characteristic the

addition of damping controllers does not improve the damping of transients. Secondly, rather

than designing (costly) damping controls it is in the favor of the system to deactivate the fast

basic controls of the UPFCs to decrease the first swing peaks. These results are depicted by the

injected active generator power (Fig. 5.13) as well as the injected reactive shunt current part and

applied active power flow control voltage component of UPFC 2 (Fig. 5.14). The nearby generator

4 is influenced most and has its output power flow reduced to 25% during the short-circuit time

period. The basic UPFC control (focusing on nearby UPFC 2 in the following) responds quickly

to the fault and reaches the limit for power flow control. This yields a large peak in generator
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output at the time of fault clearing and line reclosing. While the deactivation of the basic control3

results in reduced initial transients and it maintains the same damping characteristics.

The proposed TSK-damping scheme has been applied to study the impact on the system.

The resulting transients have been added to the figures. The results support the conclusion that

the damping can be hardly improved if at all for this (type of) power system. Basic controls have

been disabled for the fault duration and then reactivated to allow the sending bus voltage control

as well as the TSK-damping scheme to augment the active line power flow. The damping control

helps to improve the first swing characteristic and then turns itself off.

This result is in sharp contrast to the Two area - Four generator system response where

the first swing was almost fully determined by the fault and system inertia and the subsequent

damping could be improved by the TSK-scheme. The reason for this shift is caused in the

transmission system. Augmenting the controlled line flow in the longitudinal two area system

results in explicit changes in generators’ electrical output power. Also, the transients were locally

predictable as they were mostly in phase in each area and out-of-phase between the areas. The

meshed power system such as that studied here seems to be a good representative of limitations as

observed by the power system industry. As [87]4 notes: Large-scale real-world systems as opposed

to single machine-infinite bus systems and somewhat more complex three or four machine systems

show hardly any performance improvement using FACTS devices. Properly tuned conventional

PSSs seem to be the best answer considering both technical and financial resources. FACTS

devices may even degrade the overall performance through adverse interactions between controls.

5.2.2 Investigating the influence of the UPFCs using wide-area measurements

The inability of the local damping scheme sparked interest in the question of whether UPFCs

can improve the overall transient stability of the system in the event that more details about the

actual power system state are available. Today’s possibility of wide-area measurements (see for

example [87]) allow the communication of remote measurements to distant places. Therefore, an

alternative damping scheme based on remote measurements will be introduced and its influence

on system behavior examined. The following assumptions are made: (a) The accelerating power

(Pacc) of each generator is measurable, (b) the measured power can be transmitted to each UPFC,
3[8] used an autonomous coordination scheme that derived rules for a fuzzy gain scheduling. The gain as inferred

is used to turn the basic control off (allowing the damping controller to fully operate the UPFC) as soon as a major
disturbance has been detected. After swings are almost damped the basic control is reactivated. A simple time
controlled deactivation scheme has been used here to reproduce the overall system behavior.

4Appendix J: A new look at damping control, p. J-1.
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(d) Generator 4

Figure 5.13: Active power injected by generators 1-4 (solid - active, dash-dotted - inactive, dotted

- TSK, dashed - voting)
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(b) Voltage component controlling active power

Figure 5.14: Controlled components of UPFC 2 (solid - active, dash-dotted - inactive, dotted -

TSK, dashed - voting)

(c) a table relating a change in active line power flow at each UPFC to a change in accelerating

power of each generator is available, and (d) by using the table and a voting process the correct

damping signals can be inferred.

Comments on these assumptions: The communication requirements of twelve channels (4

generators * 3 UPFCs) with a reasonable limit on delays should be realizable with respect to both

technical and economical aspects. The table can be created using the linearized system or simply

by evaluating the response to a forced line power flow augmentation. The only practical problem

is the determination of the accelerating power due to the involved mechanical component (Pacc =

Pmech − Pe), which needs to be estimated/computed from the actual speed (or frequency) of the

generator, e.g., through use of a common washout elements and filters. Using the accelerating

power and speed deviation as input signals, the TSK-scheme is used to determine each generator’s

state.

Using the telemetered state signals at the local UPFC sites the table is used to determine

the currently best control action; Increasing or decreasing the line flow? Due to its underlying

principle, to infer the correct action by allowing each generator to submit its suggestion and to

find the winning action by determining which action has been chosen most often, the scheme
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Figure 5.15: Voting damping controller

will be referred to as the voting damping controller in the following. The UPFCs’ influence as

evaluated through using a small sinusoidal excitation signal is given in Table 5.5. The phase shifts

in swings in accelerating power have been translated into the linguistic terms accelerating and

decelerating. These two terms link the local UPFC action to the change in generators’ electrical

power outputs causing acceleration or deceleration. Once the decision on the correct damping

action has been made the table is used to find the appropriate UPFC control command. The

entry for UPFC 2 - generator 2 shows a phase shift somewhere between both, and is therefore an

indicator that no reliable action can be inferred and will thus be ignored by the voting process.

The damping controller scheme is shown in Fig. 5.15. It includes PT1 elements at the in- and

outports to model delays as well as a dead-zone to restrict damping actions to larger deviations

from the steady-state only.5

The control scheme was tested under the same conditions as stated above and the results

have been added to the previously mentioned figures. The damping signals inferred by voting

are shown in Fig. 5.16. The simulation results depict that this system has the best first swing

behavior. Also, the damping scheme correctly turns itself off shortly after line reclosing, leaving

the system to its inherent damping. Whereas the local scheme suffered from control interactions,

the global scheme uses input signals that represent the state of the system (observability) well

and the UPFCs are able to remotely augment the generators’ electric power outputs correctly

using the voting process resulting in limited and coordinated damping actions (controllability).

5The scheme proposed here is only meant to be a reference for a possible coordinated control of multiple FACTS
devices. Besides the influence of time delays on signal transmission and the voting process no other investigations
into technical difficulties and parameter tuning have been performed. It was found that delays of up to 100 ms
result in improved performance.
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Table 5.5: MPS: UPFCs’ influence on generators
UPFC 1 UPFC 2 UPFC 3

Mag Phase Linguis- Mag Phase Linguis- Mag Phase Linguis-
% deg tic % deg tic % deg tic

Gen1 70 140 dec 56 166 dec 113 -15 acc
Gen2 80 -180 dec 18 115 - 37 -50 acc
Gen3 65 -22 acc 67 -7 acc 72 151 dec
Gen4 65 -22 acc 46 -36 acc 92 166 dec
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Figure 5.16: Damping signals inferred by voting process
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Figure 5.17: New England - New York system

5.3 New England - New York power system

The third case study involves a reduced order model of the New England - New York power

system [14], [73]. The system consists of 16 generators, 68 buses (35 of them are load buses),

and 89 interconnecting lines. Each generator is modeled in detail, has a static exciter and PSS,

and includes thermal turbine-governors. The system is shown in Fig. 5.17. Dynamics within the

power system after a large disturbance may include five areas of coherently swinging buses [73]

and therefore create an interesting stability problem. The following presents a brief discussion

of UPFC siting followed by simulation results that are representative for the system behavior in

three different cases: A contingency involving a line that is in some distance from the UPFCs, a

contingency on a line in close proximity to one of the UPFCs, and a case study examining the

influence of a UPFC on its region of influence.

5.3.1 Load flow analysis and UPFC siting

Load flow analysis showed that shunt compensation is only of importance at loading levels of

about 120%. Therefore, the UPFC sites were chosen to be at the mid-points of tie-lines that

typically separate coherently swinging groups of generators and buses after large disturbances.

Three of these weak links, the lines 41-42, 16-17, and 8-9 (as identified in [73]) have been chosen

as candidates for UPFC installation. The number of UPFCs has been kept low to differ from
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the previous case study where the number of UPFCs has been determined to guarantee a strong

controllability of power flows with a high degree of possible interactions between UPFCs.

5.3.2 Contingency 1 - Far case

The first contingency examines the system response due to a 100 ms fault on line 29-28. The

line is not reclosed after fault clearance. This contingency has been identified as critical in

previous studies ([29], [73]) and used as validation for successful PSS design. The result for the

relative angle of generators 9 (reference is generator 1) that is close to the fault location, is shown

in Fig. 5.18. The plot compares the system with PSS designed using the phase compensation

method to shift modes of interest to the left [73], PSS tuned using genetic algorithms (GA)

[29], system with GA tuned PSS and inactive UPFCs, and GA tuned PSS with active UPFC and

TSK-damping scheme. The loads have been replaced with a constant impedance-type model. The

swings for the system with UPFCs but without fuzzy damping control are not shown because

of only minor differences. The presence of the UPFCs and their efforts in stabilizing the local

swings seems to be the best solution. Further tests with different TSK-parameters lead to an

interesting result. When the parameters for the TSK-scheme were chosen to result in high initial

controller effort of UPFC 2, which is the closest UPFC to the fault location and generator 9, the

damping of machine 9 could be improved as is shown in Fig. 5.19. The positive effect comes with

the disadvantage of a persistent local mode as can be seen in the figure. At about 4-5 seconds

the generator swings are successfully damped but the swings local to UPFC 2 excite them again

causing continuous swings and a successive degradation of system performance. The generator

and UPFCs are close and remote to the fault location, respectively. Nevertheless, negative impact

on the first swing stability just as in the two area and meshed power systems can be observed.

The damping has not been improved.

Different load models have been used to gain further insight due to changed loading conditions:

(a) Constant impedance load, (b) Static ZIP-loads (20%, 30%, and 50%, respectively), and (c)

Dynamic IP-loads with a first-order time delay of 200 ms plus constant impedance load (30%, 50%,

and 20%, respectively) have been investigated. Very different post-disturbance behavior resulting

from these three loading conditions have been observed (Fig. 5.20). The plots show results for

both machine 1 and 9, which are distant and close to the fault location, and compare the post-

disturbance transients depending on the UPFCs’ control modes. The modes examined are: (a)

constant injected series voltages as found during load flow computations (LF), (b) basic control
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Figure 5.18: NE-NY contingency 1: Influence on machine 9 (dash-dotted - PSS, dotted - GA

PSS, dashed - inactive UPFC, solid - UPFC+TSK)
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Figure 5.19: NE-NY contingency 1: Fuzzy damping control influence on machine 9 (solid - TSK,

dotted - High gain TSK)
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Figure 5.20: NE-NY contingency 1: Machine speed response for different types of loads
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Figure 5.21: NE-NY contingency 1: Active line power flows at UPFC sites

of bus voltage and power flows (BC), and (c) active TSK-damping control (TSK). In all cases

the TSK-damping with restrictions on maximum controller effort, e.g., maximum series injected

voltage magnitude of 0.3 pu, cannot improve the system damping characteristics. Depending on

the load characteristics different peaks and settling times have been observed. The UPFCs with

active controls increase damping in the case of constant impedance loads and static ZIP-loads to

some extend and improved it greatly in the case of dynamic IP-loads. The different characteristics

in system behavior can also be seen in the active line power flows at the UPFCs’ sites (Fig. 5.21).

5.3.3 Contingency 2 - Near case

The second contingency examines the system response due to a 100 ms fault on line 18-17. The

line is reclosed after an additional 200 ms elapsed. The results for the generators 1, 9, and 15

are shown in Fig. 5.22. This case differs from the first one in that the fault location is in close
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proximity to one of the UPFCs (UPFC 2). The speed responses show that a compromise has to

be made during the tuning process. While local swings including transients of machine 9 can be

improved in case of active controls, distant generators do not necessarily underline the advanced

system characteristics. Fig. 5.22a gives the speed response of machine 1 that has a slightly

improved first swing stability. Nevertheless, machine 15 (Fig. 5.22c) experiences an increase in

speed offsets.

This case study clearly shows that the improvements in damping by application of FACTS

devices that are placed throughout the transmission system requires a careful control design

and parameter tuning process. Otherwise, the fast reacting FACTS devices have the capability

to force swings in even distant parts of the power system by interfering with excitation and

stabilizer controls suggesting that inactivated UPFC controls may be the better choice.

5.3.4 Contingency 3 - Region of influence

The third contingency is used to discuss the possible influence of a UPFC and its damping

scheme on its region of influence as well as possible adjustments to the damping scheme by using

different local information and remote measurements. Rather then requesting information from

all generators as for the meshed power system case study a scheme with limited communication

is tested. The following concentrates on UPFC 1 that is placed on line 41-42.

The assumption made for UPFC 1 is that it should be utilized as damping controller for its

region of influence. Examining the UPFC’s location it can be seen that a change in active power

flow will have immediate impact on the two branches from bus 41 to 1 (including buses 40, 48,

47, and 66) and 41 - 52 (including buses 42 and 67). Therefore, the three generators 14, 15, and

16 are in the region of the UPFC’s influence.

Simulation of fault occurrences in the region of influence, e.g., between buses 41-1, lead to

the conclusion that the local fuzzy damping scheme using the line power flow as input is not able

to determine the representative state of the power system. It was observed that, first, the UPFC

only stabilized its local power flow swings, and second, infers incorrect damping signals. The

second observation is explained as follows: Faults reduce the electric power output of generator

14 but also result in a shift of power flow to the line where UPFC 1 is located. Therefore, any

scheme based on the total power flow measurement will infer that the generator is forced to

provide excess electrical power and its speed is reducing rather than increasing.

The first choice in improving damping is to find an input signal that allows better observation
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Figure 5.22: NE-NY contingency 2: Speed responses (dashed - inactive UPFC, dotted - UPFC,

solid - UPFCs with TSK-damping)
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and control of transients. In [16] the frequency deviation has been suggested as measurement

for the active and reactive power control of energy storage units that are installed at any bus

within the network. Simulations performed using this choice revealed that only faults between

buses 41 and 1 can be successfully damped but faults between 42 and 52 result in undesirable

system transients. The extension of the frequency measurement to both UPFC buses to use the

derivative of the angle difference between them is not only a reasonable choice but also results in a

damping scheme based on the transient energy function (TEF) approach as discussed above (see

4.7, p. 72). The TEF control law and the TSK equivalent have been tested and the simulation

results are given in Fig. 5.23 (250 ms 3-phase fault cleared by opening line 41-40, reclosing after

additional 250 ms elapsed) and Fig. 5.24 (100 ms 3-phase fault cleared by opening line 52-42,

reclosing after additional 100 ms elapsed). Additionally, the results for inactive controls (meaning

that the voltages as found by the load flow are injected) as well as active basic controls have been

added to the figures to allow further comparisons. Both schemes can only improve the system

performance in case the basic UPFC controls were activated at the time of fault occurrence.

Also, after the initial transients have been reduced unnecessary control action causing increased

settling times is observed. Whereas the TSK-TEF scheme swings at the prefault operating point

the TEF-method causes a shift in the operating point due to the missing integrator signal as

utilized in the TSK’s input signal conditioning unit.

The problem of unsatisfactory transient behavior can only be solved by using the generator’s

output power (or an equivalent signal such as speed) as input to the damping scheme. The remote

measurement allows to infer the best UPFC control action to help stabilize the generators. The

generator swings have been added to Fig. 5.23a. As expected this will have a negative impact on

nearby generators such as generator 15 and is shown in Fig. 5.23b. The benefits of this damping

scheme in stabilizing the machine that is mostly disturbed require a trade-off during the design

process to ensure stability of swings in other machines. The responses using the local frequency

deviation have not been added to the line 41-40 contingency but the damping of the transients

is comparable to the remote case scenario apart from the observation that the negative effect on

machine 15 increased.

A generalization of this scheme can be achieved by monitoring the active power outputs of

all three generators. This allows secure operation of the branches controllable by the UPFC.

The signals guarantee correct fault detection, the decision which of the three generators requires

damping, and the appropriate damping signal. The simulation results for a fault on line 52-42
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are shown to demonstrate the correctness for a different fault scenario within the UPFC’s region

of influence. The improved transient performance of the generator mainly involved can be seen

in Fig. 5.24b.

The conclusion is that the local damping schemes can not improve over the results as found in

the case of inactivated basic controls. Simulation results for loads represented as a mix of static

and dynamic ZIP-models have shown small stabilizing effects and are not presented here.
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Figure 5.23: NE-NY contingency 3: Speed responses fault 41-40
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Figure 5.24: NE-NY contingency 3: Speed responses fault 52-42
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Chapter 6

Summary and conclusions

Improvements in simulation environment with the incorporation of FACTS devices, and the flex-

ibility in designing and adding control schemes within MATLAB/Simulink have been presented.

The new Power Analysis Toolbox that was developed provides a general platform for power

system stability studies. PAT has proved its usability in the case studies presented in terms

of setting-up power system examples, load flow computations, and transient simulation studies.

The results using a fuzzy damping scheme applied to the UPFC have shown improved damping

for a variety of operating conditions. Due to the decentralized design utilizing a locally available

measurement, practical feasibility is guaranteed.

In case of the Two area - Four machine system a great impact of the fuzzy damping scheme

was observed. This is not surprising considering the objectives of the power system model itself.

The swings between the two areas are easily tracked by the signal conditioning unit and can be

translated into the appropriate damping signal by the fuzzy scheme. The adjustable gain makes it

possible to deal with different loading conditions and disturbance levels yielding positive damping

contributions to the various case scenarios. Also, the fault event itself is relatively easy to detect

by observing unusually large steps in local measurements. Therefore, any power system that can

be represented by this structure, i.e., Single machine infinite bus systems and two areas swinging

against each other, will benefit from the fuzzy damping scheme.

Much more complex control effects have been discovered in the meshed power system case

studies. The possibility of adverse influences through the fast acting FACTS devices makes a

detailed transient analysis of these systems a challenging task. In case of the meshed system two

conclusions can be drawn: First, inactivation of basic controls is favorable for post-disturbance
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transients, and second, only minor improvements can be achieved using local measurements.

The TSK-scheme could improve the first swing stability but not the system damping. This

observation leads to the idea of a damping scheme using global information and decision schemes.

The generators’ accelerating power and tables relating each UPFC to a change in such were used

to infer the correct damping signal by a simple voting process. The validity of the scheme and

the improvements in system performance were ensured via simulations.

Case studies involving the New England - New York system have been performed to investigate

a large multi-machine system with a limited number of FACTS devices. The test system leads

to different conclusions for the various scenarios presented. The interesting observation is that,

though the number of FACTS devices is low, severe negative effects have been observed in the

case of static and dynamic power and current loads when basic controls had been deactivated for

the UPFCs. This result differs from the meshed power system case study. Active basic controls,

especially power flow control, improves stability in parts of the system. This observation depends

on the actual load siting and transmission system configuration. For UPFCs with a higher

influence on line flows and nearby generators the inactivation of basic controls may improve system

stability. Increased interactions caused by the local damping schemes limit their applicability

in the highly interconnected power system and suggest that remote measurements may be a

necessity.

6.1 Work based on this dissertation

The developed PAT has already been used in the research of [23] and [30]. Both utilized PAT as

a simulation environment and basis for the design and evaluation of suggested control schemes.

Linear analysis and design techniques were used and [30] combined PAT with a toolbox for

genetic algorithms, a third-party product. In the latter, the possibility to find the state space

representation using PAT and batch-processing capabilities of MATLAB to generate and test a

large number of controller designs proved to be very useful. It solved the problem of finding

a solution in a large, highly nonlinear parameter space. Also, work on load frequency control,

distributed generation, system identification, and model reduction currently in progress make use

of PAT’s modeling capabilities bundled with MATLAB’s toolboxes.
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6.2 Suggestions for future work

Modeling of FACTS devices within the PST resulted in an undesirably inflexible tool without

the possibility to automatically generate the state space representation as well as low simula-

tion performance. The complexity of variables and their interdependencies were seen as strong

disadvantage. PAT has been developed to overcome these drawbacks. The data and modeling

structure introduced targeted the minimization of implementation time required for new com-

ponents. A logical next step in developing PAT should be to add an advanced object-oriented

top-layer modeling scheme. The object-oriented approach is considered as the most promising

way to cope with the diversity and number of different devices. The representation of the physi-

cal power system by meaningful objects would greatly simplify the modeling and add additional

advantages, such as the possibility to incorporate symbolic modeling and computations. This

would allow preprocessing of the resulting DAE system and thus minimize the time required for

solving the remaining set of nonlinear equations. Furthermore, general conclusions in analyzing

power systems, e.g., sensitivity computations and functional optimization, could be realized with

little extra cost. Improvements in the speed of transient stability studies should also be sought.

This could be done by replacing part of the network (or transmission system) interface with C-

system functions. System functions written in C allow improved communication with Simulink’s

ODE solvers, which in turn allow handling of switching events in an advanced manner. Part of

generating these functions could be implemented through automatic code generation as provided

by the symbolic toolbox. Also, while the power system sparsity is used to reduce the amount of

memory required for the load flow computations and sparse eigenanalysis functions are provided

with MATLAB, the Simulink ODE solvers do not make use of sparsity structures. Finding a

solution to overcome this drawback would lead to a power analysis package very well suited for

analysis of real-world systems where the number of states may be up to 14,000 - 25,000. The

main disadvantage of PAT is the necessity of an extra block for interfacing FACTS devices. By

generating a consistent set of DAEs need for an extra interface scheme could be overcome and

the solution at the current time step could be solved with a single iterative procedure.

The toolbox was utilized to analyze the proposed fuzzy damping scheme for UPFCs. Though

a satisfactory damping with a scheme of limited computational requirements could be achieved

further research could expand the efforts made. The possible range of yet unresolved issues

includes the extension to systems with a high degree of interconnections, utilization of wide

area measurements by proper selection of signals and measurement schemes, online-algorithms
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for dynamic system security assessment, and the control schemes applied at FACTS devices

translating these advanced techniques into appropriate control actions.

The work in this dissertation concentrated on decentralized control, a topic that has dom-

inated the power system industry for decades. The inherent disadvantages of controls relying

on the availability and response characteristics of communication links are still a major burden.

Nevertheless, new technologies allow obtaining of accurate measurements, fast signal processing,

and communication using a variety of different types of carriers with improved security features.

These will make it possible to perform real-time control of fast power system dynamics. New

control algorithms will be required to ensure the most advantageous overall system response. A

fairly simple scheme has been introduced in this dissertation but more of these, especially in the

form of the currently evolving view of controllers as intelligent agents, will be of use in modern

electric power systems. Controls with limited communication have already drawn research inter-

est and will be of the utmost importance in the deregulated environment. This is not only due to

the demonstrated possibility of negative technical effects of FACTS devices and their controls but

also due to the exchange of information that will be a natural part of generating, transmitting,

and distributing electrical energy in the new power system market.
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Appendix A

Publications

The work done so far has been presented at several conferences and published in the corresponding

proceedings. Two journal articles and a book chapter have been accepted for publication. Each

publication is given with its abstract and reference:

• Load-Flow and Dynamic Model of the Unified Power Flow Controller (UPFC)

within the Power System Toolbox (PST):

Abstract: To assess the UPFC’s capabilities through simulation, a software tool is needed.

The Power System Toolbox (PST) has several power device models but not the UPFC.

This paper develops a UPFC module that is integrated within the PST. It consists of three

components: a steady-state model or load-flow model, a dynamic model, and an interface

algorithm. All of these three components are described in this paper following the section

on the UPFC’s basic operation. A Two-Area-Four-Generator power system with a UPFC

is used to demonstrate the proposed tools.

Reference: Schoder, K., Hasanović, A., Feliachi, A., “Load-Flow and Dynamic Model of

the Unified Power Flow Controller (UPFC) within the Power System Toolbox (PST),” Proc.

of Midwest Symposium on Circuits and Systems, Lansing, Michigan, Vol. 2, pp. 634-637,

August 2000.

• Enhancing Transient Stability using a Fuzzy Control Scheme for the Unified

Power Flow Controller (UPFC):

Abstract: This paper proposes a power system oscillation damping scheme through a sup-

plementary signal applied to a Unified Power Flow Controller (UPFC). The supplementary

signal is based on the active power flow along the transmission line. The controller designed
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is based on fuzzy logic. The UPFC model and its controls are implemented in the Power

System Toolbox (PST). To demonstrate the effectiveness of the controller under dynamic

conditions a two area power system is used. When a large disturbance is applied, simu-

lation results show that the UPFC can significantly enhance power system operation and

performance.

Reference: Schoder, K., Hasanović, A., Feliachi, A., “Enhancing Transient Stability using

a Fuzzy Control Scheme for the Unified Power Flow Controller (UPFC),” Proc. of Midwest

Symposium on Circuits and Systems, Lansing, Michigan, Vol. 3, pp. 1382-1385, August

2000.

• Fuzzy Damping Controller for the Unified Power Flow Controller (UPFC):

Abstract: The Unified Power Flow Controller (UPFC) is one of the latest Flexible AC

Transmission Systems (FACTS) devices which is capable of maintaining and improving

power system transient stability. This paper focuses on UPFC damping controller design

based on fuzzy logic. The effectiveness of the controller is illustrated through nonlinear

simulation of a two-area-four-machine power system using Power System Toolbox (PST).

Reference: Schoder, K., Hasanović, A., Feliachi, A., “Fuzzy Damping Controller for the

Unified Power Flow Controller (UPFC),” Proc. of the North American Power Symposium

(NAPS), Waterloo, Canada, Vol. 2, pp. 5-21 - 5-27, October 2000.

• Power System Damping Using Fuzzy Controlled Unified Power Flow Controller:

Abstract: The paper presents a design of a UPFC damping controller using two fuzzy

logic schemes one based on Mamdani inference engine using the center of gravity method

to find the controller output, and the second based on Takagi-Sugeno engine computing

the controller output as linear combination of the inputs. Fuzzy control design is attractive

for nonlinear systems application because it does not require a mathematical model, and it

can cover a wide range of operating conditions. The advantages of the proposed controllers

are their feasibility guaranteed by the use of a local measurement, which in this case is the

tie line power flow, and their simplicity. The effectiveness of the controllers under dynamic

conditions is illustrated thru nonlinear simulations of a two-area-four-machine power system.

Simulations are carried out using the Power System Toolbox (PST).

Reference: Schoder, K., Hasanović, A., Feliachi, A., “Power System Damping Using Fuzzy

Controlled Unified Power Flow Controller,” Proc. of the IEEE Power Engineering Society

Winter Meeting, Columbus, Ohio, January 29 - February 1, Vol. 2, pp. 617-622, 2001.
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• Selection and Design of a TCSC Control Signal in Damping Power System

Inter-Area Oscillations for Multiple Operating Conditions

Abstract: A method is proposed to identify an effective local signal that can be used by a

Thyristor Controlled Series Compensation (TCSC) device as a supplementary controller to

dampen interarea oscillations for multiple power system operating conditions. Two residue-

based indices are developed for this purpose. The first index is to identify the most effective

signal to feedback for different operating conditions, and the second index is to assess the

interaction of the controller with other oscillation modes than the critical mode, i.e. the

mode that is to be controlled. Two designs are presented to illustrate the proposed method-

ologies, a conventional lead-lag controller, and a controller using a multi-step control design

approach. The proposed techniques are applied to a four-generator two-area power system.

Nonlinear simulation is used to demonstrate the effectiveness of the designed controller.

Reference: Fan, L., Feliachi, A., Schoder, K., “Selection and Design of a TCSC Control

Signal in Damping Power System Inter-Area Oscillations for Multiple Operating Condi-

tions,” Electric Power Systems Research, 2002.

• PAT: A Power Analysis Toolbox for MATLAB/Simulink

Abstract: A power system simulation environment in MATLAB/Simulink is presented in

this paper. The developed Power Analysis Toolbox (PAT) is a very flexible and modular

tool for load flow, transient and small signal analysis of electric power systems. Standard

power system component models and a wide range of FACTS devices are included. Its data

structure and block library have been tested to confirm its applicability to small to medium

sized power systems. Its advantages over an existing commercial package is given.

Reference: Schoder, K., Hasanović, Amer, Feliachi, A., Hasanović, Azra, “PAT: A Power

Analysis Toolbox for MATLAB/Simulink,” submitted to IEEE Transactions on Power

Systems.

• Feliachi, A., Hasanović, A., Schoder, K., The power electronics handbook, chapter 20: “Uni-

fied Power Flow Controllers,” Skvarenina, T. L. (editor), CRC Press LLC, 2002.
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Three machine-Nine bus system data

Angle Generation Load Bus
bus V (deg) Pg Qg P Q type

bumber 1 2 3 4 5 6 7

1 1.0400 0.00 0.7164 0.2710 - - Slack
2 1.0250 9.32 1.6300 0.0659 - - PV
3 1.0250 4.70 0.8500 -0.1092 - - PV
4 1.0260 -2.18 - - - - PQ
5 0.9958 -3.95 - - 1.25 0.50 PQ
6 1.0128 -3.65 - - 0.90 0.30 PQ
7 1.0258 -3.76 - - - - PQ
8 1.0159 0.76 - - 1.00 0.35 PQ
9 1.0324 2.00 - - - - PQ

Bus data case (a) (system base: 100 MVA)

base x′d H
bus MVA (pu) (sec.)

number 1 2 3

1 100 0.0608 23.64
2 100 0.1198 6.40
3 100 0.1813 3.01

Generator data

from to resistance reactance line charging
line bus bus (pu) (pu) (pu)

number 1 2 3 4 5

1 1 4 - 0.0567 -
2 2 7 - 0.0625 -
3 3 9 - 0.0586 -
4 4 5 0.0100 0.0850 0.0880*2
5 4 6 0.0170 0.0920 0.0790*2
6 5 7 0.0320 0.1610 0.1530*2
7 6 9 0.0390 0.1700 0.1790*2
8 7 8 0.0085 0.0720 0.0745*2
9 8 9 0.0119 0.1008 0.1045*2

Line data
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Two Area-Four Machine system data

Angle Generation Load Bus
bus V (deg) Pg Qg P Q type

bumber 1 2 3 4 5 6 7

1 1.0300 0.00 7.10 1.76 - - Slack
2 1.0100 -9.97 7.00 2.06 - - PV
3 0.9697 -25.12 - 2.00 - - PQ
4 0.9632 -28.11 - 9.76 1.00 PQ
10 1.0081 -6.56 - - - PQ
11 1.0300 -27.88 7.19 1.99 - - PV
12 1.0100 -38.13 7.00 2.57 - - PV
13 0.9551 -53.55 - 3.50 - - PQ
14 0.9965 -58.61 - - 17.67 1.00 PQ
20 0.9827 -16.74 - - - - PQ
101 1.0000 -38.42 -3.20 0.0038 - - PV
102 0.9480 -42.30 - - - - PQ
110 1.0045 -34.54 - - 1.00 0.35 PQ
120 0.9744 -44.96 - - - - PQ

Bus data (system base: 100 MVA)

Load Shunt
bus P Q B

bumber case 1 2 3

4 (b) 11.76 1.00 -
14 (b) 15.67 1.00 -
101 (b) - - 0.8

4 (c) 17.76 1.00 -
14 (c) 9.76 1.00 -
101 (c) - - 1.6

case (b) and (c) data
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from to resistance reactance line charging ULTC
line bus bus (pu) (pu) (pu) max min step

number 1 2 3 4 5 6 7 8

1 1 10 - 0.0167 - - - -
2 2 20 - 0.0167 - - - -
3 10 20 0.0025 0.0250 0.0437 - - -
4 20 3 0.0010 0.0100 0.0175 - - -
5 3 4 - 0.0050 - 1.2 0.8 0.05
6 3 101 0.0110 0.1100 0.1925 - - -
7 3 101 0.0110 0.1100 0.1925 - - -
8 101 13 0.0110 0.1100 0.1925 - - -
9 102 13 0.0110 0.1100 0.1925 - - -
10 13 14 - 0.0050 - 1.2 0.8 0.05
11 13 120 0.0010 0.0100 0.0175 - - -
12 120 110 0.0025 0.0250 0.0437 - - -
13 11 110 - 0.0167 - - - -
14 12 120 - 0.0167 - - -

base xl resis- xd x′d x′′d T ′
do

MVA tance
machine bus (pu) (pu) (pu) (pu) (pu) (sec)
number number 1 2 3 4 5 6 7

1, 2 1, 2 900 0.2 0.0025 1.8 0.30 0.25 8
3, 4 11, 12 900 0.2 0.0025 1.8 0.30 0.25 8

T ′
do xq x′q x′′q T ′

qo T ′′
qo H

(pu) (pu) (pu) (pu) (pu) (pu) (sec.)
8 9 10 11 12 13 14

0.03 1.7 0.55 0.25 0.4 0.05 6.500
0.03 1.7 0.55 0.25 0.4 0.05 6.175

steady-state maximum servo governor HP section Reheater
gain power time time time time

turbine- 1/R (on mac. base) constant constant constant constant
governor (pu) (pu) (sec) (sec) (sec) (sec)
number 1 2 3 4 5 6

1, 2, 3, 4 25.00 1.00 0.10 0.50 1.25 5.00

machine exciter input filter gain time const. max min
number type TR KA TA VR VR

exciter (sec) (pu) (sec) (pu) (pu)
number 1 2 3 4 5 6 7

1 1 IEEE DC 1 0.01 46.0 0.06 1.00 -0.9
2 4 IEEE DC 2 0.01 300.0 0.01 4.95 -4.9

exc. const. exc. time const. E1 SE(E1) E2 SE(E2) stabilizer stabilizer
KE TE angle gain kF time TF

(sec) (deg) (sec)
8 9 10 11 12 13 14 15

- 0.46 3.1 0.33 2.3 0.1 0.1 1.0
1.0 1.33 3.05 0.279 2.29 0.117 0.1 0.675

machine exciter input filter gain time const. max min
number type TR KA TA VR VR

exciter (sec) (pu) (sec) (pu) (pu)
number 1 2 3 4 5 6 7

3 3 Simple - 200.0 0.01 10.0 -10.0
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machine exciter input filter gain max
number type TR KA TA VR

exciter (sec) (pu) (sec) (pu)
number 1 2 3 4 5 6

4 2 IEEE ST3 0.01 7.04 1.0 10.0

min max int. min int. regulator pot. circ.
VR TB TC sig. VImax sig. VImax gain kJ gain kP

(pu) (sec) (sec)
7 8 9 10 11 12 13

-10.0 6.67 1.0 0.2 -0.2 200 4.37

pot. circ. pot. circ. pot. source rectifier max. field inner loop max. inner
phase angle qP gain kI reactance loading voltage fdb. kG loop FB VGmax

(deg) (pu) factor kC (pu) (pu)
14 15 12 13 14 15 15

20 4.83 0.09 1.1 8.63 1.0 6.53

gain washout lead T11 lag T12 lead T21 lag T22 max min
PSS machine (pu) (sec) (sec) (sec) (sec) (sec) (pu) (pu)

number number 1 2 3 4 5 6 7 8

1 2 300 20 0.10 0.02 0.10 0.02 0.20 -0.05
2 3 300 20 0.06 0.04 0.08 0.04 0.20 -0.05

device sending receiving shunt series shunt series DC link
bus bus reactance reactance turn ratio turn ratio voltage

UPFC (pu) (pu) (kV)
number 1 2 3 4 5 6 7

1 101 102 0.0575 0.05 0.0295 0.048 22

DC link AC base Shunt conv. Series conv. max VP max VQ

capacitor voltage rating rating
(pu) (kV) (pu) (pu) (pu) (pu)

8 9 10 11 12 13

0.055 220 1.60 1.60 0.30 0.15

control DC voltage AC voltage Active power Reactive power
kP TI kP TI kP TI kP TI

UPFC (pu) (ms) (pu) (ms) (pu) (sec) (pu) (sec)
number 1 2 1 2 1 2 1 2

1 10 10 30 80 0.01 1.1 0.01 1.1

phase- Power Energy Energy Integral
plane washout scaling washout scaling washout scaling

measure- (sec) (sec) (sec)
ment 1 2 3 4 5 6

1 0.8 1 0.5 0.1 0.3 1

fault trigger level maximum minimum transition turn-off

∆P ∆Ṗ ∆V output output angle kD

TSK (pu) (pu/ms) (pu) (pu) (pu) (deg)
number 1 2 3 4 5 6 7

1 0.15 1 0.10 0.80 -0.80 25 0.90
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Meshed Power System data

Angle Generation Load Bus
bus V (deg) Pg Qg P Q type

bumber 1 2 3 4 5 6 7

1 1.00 0.00 1.07 0.23 - - Slack
2 1.00 -3.79 0.80 0.17 - - PV
3 1.00 -5.68 0.90 0.19 - - PV
4 1.00 -8.10 0.90 0.37 - - PV
5 0.98 -3.70 - - - - PQ
6 0.98 -3.70 - - - - PQ
7 0.92 -17.03 - - - - PQ
8 0.90 -23.60 - - 2.20 0.30 PQ
9 0.98 -10.41 - - - - PQ
10 0.98 -10.36 - - - - PQ
11 0.98 -12.58 - - - - PQ
12 0.96 -14.77 - - - - PQ
13 0.94 -7.92 - - 0.80 0.30 PQ
14 0.99 -7.87 - - - - PQ
15 0.99 -5.78 - - - - PQ
16 0.99 -2.68 - - - - PQ
17 0.99 -14.60 - - - - PQ
18 0.99 -16.12 - - - - PQ
19 0.95 -12.42 - - - - PQ
20 0.95 -11.46 - - 0.60 0.10 PQ

system base: 1250 MVA
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r = 234E-6 pu/km, x = 2E-3 pu/km, b = 555E-6 pu/km

from to length reactance
line bus bus (km) (pu)

number 1 2 3 4

1 6 7 120 -
2 7 9 140 -
3 7 19 100 -
4 10 11 80 -
5 11 12 70 -
6 14 12 2 -
7 14 15 200 -
8 14 19 200 -
9 14 19 120 -
10 17 7 160 -
11 16 17 160 -
12 16 17 10 -
13 18 5 140 -
14 18 17 130 -
15 11 19 80 -
16 1 18 - 0.0431
17 2 17 - 0.0431
18 3 14 - 0.0431
19 4 11 - 0.0431
20 7 8 - 0.0431
21 12 13 - 0.0431
22 19 20 - 0.0431

base xl resistance xd x′d x′′d
MVA

machine bus (pu) (pu) (pu) (pu) (pu)
number number 1 2 3 4 5 6

1, 2, 3, 4 1, 2, 3, 4 1250 0.25 0.003 2.38 0.34 -

T ′
do T ′

do xq x′q x′′q T ′
qo damping H

(sec) (pu) (pu) (pu) (pu) (pu) (pu) (sec.)
7 8 9 10 11 12 13 14

5.88 - 2.27 0.91 - 2.27 2 6.5

steady-state maximum servo governor HP section Reheater
gain power time time time time

turbine- 1/R (on mac. base) constant constant constant constant
governor (pu) (pu) (sec) (sec) (sec) (sec)
number 1 2 3 4 5 6

1, 2, 3, 4 20 1.1 0.04 0.2 1.5 2

machine exciter input filter gain time const. max min
number type TR KA TA VR VR

exciter (sec) (pu) (sec) (pu) (pu)
number 1 2 3 4 5 6 7

1, 2, 3, 4 1, 2, 3, 4 IEEE DC 1 0.5 5 0.01 5.75 -8.47

exc. const. exc. time const. E1 SE(E1) E2 SE(E2) stabilizer stabilizer
KE TE angle gain kF time TF

(sec) (deg) (sec)
8 9 10 11 12 13 14 15

1 0.65 3.1 0.33 2.3 0.1 0.04 1.65
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gain washout lead T11 lag T12 lead T21 lag T22 max min
PSS machine (pu) (sec) (sec) (sec) (sec) (sec) (pu) (pu)

number number 1 2 3 4 5 6 7 8

1 1 10 10 0.08 0.01 0.08 0.01 0.20 -0.05
2 2 10 10 0.08 0.01 0.08 0.01 0.20 -0.05
3 3 10 10 0.04 0.02 0.10 0.01 0.20 -0.05
4 4 10 10 0.08 0.02 0.08 0.02 0.20 -0.05

device sending receiving shunt series shunt series DC link
bus bus reactance reactance turn ratio turn ratio voltage

UPFC (pu) (pu) (kV)
number 1 2 3 4 5 6 7

1, 2, 3 5, 9, 15 6, 10, 16 0.2413 0.0031 0.0295 0.038 22

DC link AC base Shunt conv. Series conv. max VP max VQ

capacitor voltage rating rating
(pu) (kV) (pu) (pu) (pu) (pu)

8 9 10 11 12 13

0.055 220 1.60 1.60 0.155 0.1

control DC voltage Reactive current Active power Reactive power
kP TI kP TI kP TI kP TI

UPFC (pu) (ms) (pu) (ms) (pu) (sec) (pu) (sec)
number 1 2 3 4 5 6 7 8

1 10 20 0 200 0.1 0.01 0.1 .01

fault trigger level maximum minimum transition turn-off

∆P ∆Ṗ ∆V output output angle kD

TSK (pu) (pu/ms) (pu) (pu) (pu) (deg)
number 1 2 3 4 5 6 7

1, 2, 3 0.15 1 0.1 0.25 -0.25 25 0.90

phase- Power Energy Energy Integral
plane washout scaling washout scaling washout scaling

measure- (sec) (sec) (sec)
ment 1 2 3 4 5 6

1, 2, 3 0.8 1 0.5 0.1 0.3 1
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New England-New York system data

Angle Generation Load Bus
bus V (deg) Pg Qg P Q type

bumber 1 2 3 4 5 6 7

1 1.06 6.61 - - 2.53 1.19 PQ
2 1.05 8.43 - - - - PQ
3 1.03 5.42 - - 3.22 0.02 PQ
4 1.00 4.30 - - 5.00 1.84 PQ
5 1.00 5.26 - - - - PQ
6 1.00 5.95 - - - - PQ
7 0.99 3.65 - - 2.34 0.84 PQ
8 0.99 3.10 - - 5.22 1.77 PQ
9 1.04 2.58 - - 1.04 1.25 PQ
10 1.01 8.48 - - - - PQ
11 1.01 7.62 - - - - PQ
12 1.05 7.64 - - 0.09 0.88 PQ
13 1.01 7.81 - - - - PQ
14 1.01 6.24 - - - - PQ
15 1.01 6.14 - - 3.20 1.53 PQ
16 1.03 7.67 - - 3.29 0.32 PQ
17 1.03 6.58 - - - - PQ
18 1.03 5.71 - - 1.58 0.30 PQ
19 1.05 12.27 - - - - PQ
20 0.99 10.84 - - 6.80 1.03 PQ
21 1.03 10.31 - - 2.74 1.15 PQ
22 1.05 15.00 - - - - PQ
23 1.04 14.71 - - 2.48 0.85 PQ
24 1.04 7.85 - - 3.09 - PQ
25 1.06 9.69 - - 2.24 0.47 PQ
26 1.06 8.19 - - 1.39 0.17 PQ
27 1.04 6.30 - - 2.81 0.76 PQ
28 1.05 11.33 - - 2.06 0.28 PQ
29 1.05 13.96 - - 2.84 0.27 PQ
30 1.05 6.07 - - - - PQ
31 1.06 8.63 - - - - PQ
32 1.05 10.96 - - - - PQ
33 1.06 7.47 - - 1.12 - PQ
34 1.07 2.54 - - - - PQ
35 1.01 2.53 - - - - PQ
36 1.04 -0.85 - - 1.02 - PQ

continued on next page
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continued from previous page
Angle Generation Load Bus

bus V (deg) Pg Qg P Q type
bumber 1 2 3 4 5 6 7

37 1.03 -6.81 - - 60.00 3.00 PQ
38 1.06 8.68 - - - - PQ
39 1.01 -8.44 - - 2.67 0.13 PQ
40 1.07 15.20 - - 0.66 0.24 PQ
41 1.00 44.45 - - 10.00 2.50 PQ
42 1.00 38.96 - - 11.50 2.50 PQ
43 1.01 -7.61 - - - - PQ
44 1.01 -7.64 - - 2.68 0.05 PQ
45 1.02 2.53 - - 2.08 0.21 PQ
46 1.03 9.65 - - 1.51 0.29 PQ
47 1.07 7.36 - - 2.03 0.33 PQ
48 1.08 9.27 - - 2.41 0.02 PQ
49 1.01 12.89 - - 1.64 0.29 PQ
50 1.01 19.35 - - 1.00 - PQ
51 1.02 6.53 - - 3.37 - PQ
52 0.99 38.61 - - 24.70 1.23 PQ
53 1.05 10.85 2.50 1.21 - - PV
54 0.98 14.48 5.45 2.09 - - PV
55 0.98 16.50 6.50 2.19 - - PV
56 1.00 17.49 6.32 1.11 - - PV
57 1.01 16.01 5.05 1.64 - - PV
58 1.05 20.34 7.00 2.24 - - PV
59 1.06 22.57 5.60 1.01 - - PV
60 1.03 16.45 5.40 0.04 - - PV
61 1.03 20.78 8.00 0.07 - - PV
62 1.01 15.91 5.00 0.07 - - PV
63 1.00 18.35 10.00 -0.16 - - PV
64 1.02 4.86 13.50 2.51 - - PV
65 1.01 0.00 35.92 8.77 - - Slack
66 1.00 45.99 17.85 0.61 - - PV
67 1.00 39.82 10.00 0.66 - - PV
68 1.00 45.55 40.00 4.61 - - PV
411 1.02 41.64 - - - - PQ
421 1.02 41.64 - - - - PQ
161 1.03 7.12 - - - - PQ
171 1.03 7.12 - - - - PQ
81 1.00 2.85 -0.20 0.56 - - PV
91 1.02 2.84 - -1.16 -0.20 - PQ

system base: 100 MVA
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from to resistance reactance line charging tap
line bus bus (pu) (pu) (pu)

number 1 2 3 4 5 6

1 1 2 0.0035 0.0411 0.6987 -
2 1 30 0.0008 0.0074 0.4800 -
3 2 3 0.0013 0.0151 0.2572 -
4 2 25 0.0070 0.0086 0.1460 -
5 2 53 - 0.0181 - 1.0250
6 3 4 0.0013 0.0213 0.2214 -
7 3 18 0.0011 0.0133 0.2138 -
8 4 5 0.0008 0.0128 0.1342 -
9 4 14 0.0008 0.0129 0.1382 -
10 5 6 0.0002 0.0026 0.0434 -
11 5 8 0.0008 0.0112 0.1476 -
12 6 7 0.0006 0.0092 0.1130 -
13 6 11 0.0007 0.0082 0.1389 -
14 6 54 - 0.0250 - 1.0700
15 7 8 0.0004 0.0046 0.0780 -
16 8 81 0.0012 0.0182 0.1902 -
17 91 9 0.0012 0.0182 0.1902 -
18 9 30 0.0019 0.0183 0.2900 -
19 10 11 0.0004 0.0043 0.0729 -
20 10 13 0.0004 0.0043 0.0729 -
21 10 55 - 0.0200 - 1.0700
22 12 11 0.0016 0.0435 - 1.0600
23 12 13 0.0016 0.0435 - 1.0600
24 13 14 0.0009 0.0101 0.1723 -
25 14 15 0.0018 0.0217 0.3660 -
26 15 16 0.0009 0.0094 0.1710 -
27 16 161 0.0004 0.0045 0.0671 -
28 171 17 0.0004 0.0045 0.0671 -
29 16 19 0.0016 0.0195 0.3040 -
30 16 21 0.0008 0.0135 0.2548 -
31 16 24 0.0003 0.0059 0.0680 -
32 17 18 0.0007 0.0082 0.1319 -
33 17 27 0.0013 0.0173 0.3216 -
34 19 20 0.0007 0.0138 - 1.0600
35 19 56 0.0007 0.0142 - 1.0700
36 20 57 0.0009 0.0180 - 1.0090
37 21 22 0.0008 0.0140 0.2565 -
38 22 23 0.0006 0.0096 0.1846 -
39 22 58 - 0.0143 - 1.0250
40 23 24 0.0022 0.0350 0.3610 -
41 23 59 0.0005 0.0272 - -
42 25 26 0.0032 0.0323 0.5310 -
43 25 60 0.0006 0.0232 - 1.0250
44 26 27 0.0014 0.0147 0.2396 -
45 26 28 0.0043 0.0474 0.7802 -
46 26 29 0.0057 0.0625 1.0290 -
47 28 29 0.0014 0.0151 0.2490 -
48 29 61 0.0008 0.0156 - 1.0250
49 9 30 0.0019 0.0183 0.2900 -
50 9 36 0.0022 0.0196 0.3400 -
51 9 36 0.0022 0.0196 0.3400 -
52 36 37 0.0005 0.0045 0.3200 -
53 34 36 0.0033 0.0111 1.4500 -
54 35 34 0.0001 0.0074 - 0.9460
55 33 34 0.0011 0.0157 0.2020 -

continued on next page
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continued from previous page
from to resistance reactance line charging tap

line bus bus (pu) (pu) (pu)
number 1 2 3 4 5 6

56 32 33 0.0008 0.0099 0.1680 -
57 30 31 0.0013 0.0187 0.3330 -
58 30 32 0.0024 0.0288 0.4880 -
59 1 31 0.0016 0.0163 0.2500 -
60 31 38 0.0011 0.0147 0.2470 -
61 33 38 0.0036 0.0444 0.6930 -
62 38 46 0.0022 0.0284 0.4300 -
63 46 49 0.0018 0.0274 0.2700 -
64 1 47 0.0013 0.0188 1.3100 -
65 47 48 0.0025 0.0268 0.4000 -
66 47 48 0.0025 0.0268 0.4000 -
67 48 40 0.0020 0.0220 1.2800 -
68 35 45 0.0007 0.0175 1.3900 -
69 37 43 0.0005 0.0276 - -
70 43 44 0.0001 0.0011 - -
71 44 45 0.0025 0.0730 - -
72 39 44 - 0.0411 - -
73 39 45 - 0.0839 - -
74 45 51 0.0004 0.0105 0.7200 -
75 50 52 0.0012 0.0288 2.0600 -
76 50 51 0.0009 0.0221 1.6200 -
77 49 52 0.0076 0.1141 1.1600 -
78 52 42 0.0040 0.0600 2.2500 -
79 411 41 0.0020 0.0300 1.1250 -
80 421 42 0.0020 0.0300 1.1250 -
81 41 40 0.0060 0.0840 3.1500 -
82 31 62 - 0.0260 - 1.0400
83 32 63 - 0.0130 - 1.0400
84 36 64 - 0.0075 - 1.0400
85 37 65 - 0.0033 - 1.0400
86 66 41 - 0.0015 - 1.0000
87 42 67 - 0.0015 - 1.0000
88 52 68 - 0.0030 - 1.0000
89 1 27 0.0320 0.3200 0.4100 1.0000

base xl xd x′d x′′d T ′
do T ′

do xq x′q x′′q T ′
qo T ′′

qo H
mac./ MVA
bus (pu) (pu) (pu) (pu) (sec) (pu) (pu) (pu) (pu) (pu) (pu) (sec)
no. 1 2 3 4 5 6 7 8 9 10 11 12 13

1 / 53 1800 .013 1.8 .558 .450 10.20 0.05 1.242 .504 .450 1.50 .035 2.333
2 / 54 610 .035 1.8 .425 .305 6.56 0.05 1.721 .366 .305 1.50 .035 4.949
3 / 55 721 .030 1.8 .383 .325 5.70 0.05 1.710 .361 .325 1.50 .035 4.962
4 / 56 687 .030 1.8 .300 .240 5.69 0.05 1.773 .275 .240 1.50 .035 4.163
5 / 57 545 .027 1.8 .360 .273 5.40 0.05 1.691 .327 .273 0.44 .035 4.767
6 / 58 709 .022 1.8 .354 .283 7.30 0.05 1.708 .319 .283 0.40 .035 4.911
7 / 59 610 .032 1.8 .299 .244 5.66 0.05 1.782 .275 .244 1.50 .035 4.327
8 / 60 621 .028 1.8 .354 .279 6.70 0.05 1.738 .310 .279 0.41 .035 3.915
9 / 61 855 .030 1.8 .487 .385 4.79 0.05 1.752 .427 .385 1.96 .035 4.037
10 / 62 1065 .020 1.8 .487 .426 9.37 0.05 1.225 .479 .426 1.50 .035 2.911
11 / 63 1406 .010 1.8 .253 .169 4.10 0.05 1.730 .211 .169 1.50 .035 2.005
12 / 64 1782 .022 1.8 .552 .446 7.40 0.05 1.693 .499 .446 1.50 .035 5.179
13 / 65 12162 .003 1.8 .334 .243 5.90 0.05 1.739 .304 .243 1.50 .035 4.078
14 / 66 10000 .002 1.8 .285 .230 4.10 0.05 1.730 .250 .230 1.50 .035 3.000
15 / 67 10000 .002 1.8 .285 .230 4.10 0.05 1.730 .250 .230 1.50 .035 3.000
16 / 68 10112 .004 1.8 .359 .278 7.80 0.05 1.689 .303 .278 1.50 .035 4.450
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steady-state maximum servo governor HP section Reheater
gain power time time time time

turbine- 1/R (on mac. base) constant constant constant constant
governor (pu) (pu) (sec) (sec) (sec) (sec)
number 1 2 3 4 5 6

1-16 25.00 1.00 0.10 0.50 1.25 5.00

machine exciter input filter gain time const. max min
number type TR KA TA VR VR

exciter (sec) (pu) (sec) (pu) (pu)
number 1 2 3 4 5 6 7

1-16 1-16 Simple - 200.0 0.05 5.00 -5.00

gain washout lead T11 lag T12 lead T21 lag T22 max min
PSS machine (pu) (sec) (sec) (sec) (sec) (sec) (pu) (pu)

number number 1 2 3 4 5 6 7 8

1 1 100 10 0.08 0.01 0.08 0.01 0.20 -0.05
2 2 100 10 0.08 0.01 0.08 0.01 0.20 -0.05
3 3 100 10 0.04 0.02 0.10 0.01 0.20 -0.05
4 4 50 10 0.08 0.02 0.08 0.02 0.20 -0.05
5 5 50 10 0.05 0.01 0.08 0.02 0.20 -0.05
6 6 80 10 0.05 0.01 0.08 0.02 0.20 -0.05
7 7 80 10 0.05 0.01 0.08 0.02 0.20 -0.05
8 8 30 10 0.08 0.01 0.08 0.02 0.20 -0.05
9 9 100 10 0.05 0.01 0.05 0.02 0.20 -0.05
10 10 100 10 0.08 0.01 0.08 0.02 0.20 -0.05
11 11 30 10 0.08 0.03 0.05 0.01 0.20 -0.05
12 12 100 10 0.08 0.01 0.08 0.01 0.20 -0.05
13 13 200 10 0.04 0.01 0.05 0.01 0.20 -0.05
14 14 200 10 0.04 0.01 0.05 0.01 0.20 -0.05
15 15 200 10 0.04 0.01 0.05 0.01 0.20 -0.05
16 16 200 10 0.03 0.02 0.05 0.01 0.20 -0.05

device sending receiving shunt series shunt series DC link
bus bus reactance reactance turn ratio turn ratio voltage

UPFC (pu) (pu) (kV)
number 1 2 3 4 5 6 7

1, 2, 3 5, 9, 15 6, 10, 16 0.2413 0.0031 0.0295 0.038 22

DC link AC base Shunt conv. Series conv. max VP max VQ

capacitor voltage rating rating
(pu) (kV) (pu) (pu) (pu) (pu)

8 9 10 11 12 13

0.055 220 1.60 1.60 0.155 0.1

control DC voltage AC voltage Active power Receiving voltage
kP TI kP TI kP TI kP TI

UPFC (pu) (ms) (pu) (ms) (pu) (sec) (pu) (sec)
number 1 2 1 2 1 2 1 2

1, 2, 3 100 10 40 20 0.1 .4 0.01 1.1

phase- Power Energy Energy Integral
plane washout scaling washout scaling washout scaling

measure- (sec) (sec) (sec)
ment 1 2 3 4 5 6

1, 2, 3 0.8 1 0.5 0.1 0.3 1
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fault trigger level maximum minimum transition turn-off

∆P ∆Ṗ ∆V output output angle kD

TSK (pu) (pu/ms) (pu) (pu) (pu) (deg)
number 1 2 3 4 5 6 7

1, 2, 3 0.15 1 0.1 6.8, 2, 2 -6.8, -2, -2 25 0.90

GA tuned gain washout lead T11 lag T12 lead T21 lag T22 max min
PSS machine (pu) (sec) (sec) (sec) (sec) (sec) (pu) (pu)

number number 1 2 3 4 5 6 7 8

1 1 194 20 0.21 0.10 0.21 0.10 0.20 -0.05
2 2 75 20 0.22 0.05 0.22 0.05 0.20 -0.05
3 3 46 20 0.45 0.07 0.45 0.07 0.20 -0.05
4 4 169 20 0.17 0.06 0.17 0.06 0.20 -0.05
5 5 130 20 0.16 0.08 0.16 0.08 0.20 -0.05
6 6 78 20 0.35 0.10 0.35 0.10 0.20 -0.05
7 7 39 20 0.39 0.07 0.39 0.07 0.20 -0.05
8 8 65 20 0.32 0.06 0.32 0.06 0.20 -0.05
9 9 54 20 0.42 0.14 0.42 0.14 0.20 -0.05
10 10 107 20 0.40 0.06 0.40 0.06 0.20 -0.05
11 11 77 20 0.16 0.05 0.16 0.05 0.20 -0.05
12 12 25 20 0.98 0.21 0.98 0.21 0.20 -0.05
13 13 108 20 0.16 0.10 0.16 0.10 0.20 -0.05
14 14 101 20 0.52 0.19 0.52 0.19 0.20 -0.05
15 15 160 20 0.18 0.04 0.18 0.04 0.20 -0.05
16 16 195 20 0.31 0.09 0.31 0.09 0.20 -0.05
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