27 research outputs found

    Toll like Receptor signalling by Prevotella histicola activates alternative NF-κB signalling in Cystic Fibrosis bronchial epithelial cells compared to P. aeruginosa.

    Get PDF
    Funder: Department for Employment and Learning, Northern Ireland, UK; Grant(s): (https://www.nidirect.gov.uk/articles/department-economy-studentships)Funder: Northern Ireland Chest, Heart and Stroke Association, UK; Grant(s): NICHS, 2014_15 (https://www.nicva.org/organisation/ni-chest-heart-stroke)Cystic Fibrosis (CF), caused by mutations affecting the CFTR gene, is characterised by viscid secretions in multiple organ systems. CF airways contain thick mucus, creating a gradient of hypoxia, which promotes the establishment of polymicrobial infection. Such inflammation predisposes to further infection, a self-perpetuating cycle in mediated by NF-κB. Anaerobic Gram-negative Prevotella spp. are found in sputum from healthy volunteers and CF patients and in CF lungs correlate with reduced levels of inflammation. Prevotella histicola (P. histicola) can suppress murine lung inflammation, however, no studies have examined the role of P. histicola in modulating infection and inflammation in the CF airways. We investigated innate immune signalling and NF-kB activation in CF epithelial cells CFBE41o- in response to clinical stains of P. histicola and Pseudomonas aeruginosa (P. aeruginosa). Toll-Like Receptor (TLR) expressing HEK-293 cells and siRNA assays for TLRs and IKKα were used to confirm signalling pathways. We show that P. histicola infection activated the alternative NF-kB signalling pathway in CF bronchial epithelial cells inducing HIF-1α protein. TLR5 signalling was responsible for the induction of the alternative NF-kB pathway through phosphorylation of IKKα. The induction of transcription factor HIF-1α was inversely associated with the induction of the alternative NF-kB pathway and knockdown of IKKα partially restored canonical NF-kB activation in response to P. histicola. This study demonstrates that different bacterial species in the respiratory microbiome can contribute differently to inflammation, either by activating inflammatory cascades (P. aeruginosa) or by muting the inflammatory response by modulating similar or related pathways (P. histicola). Further work is required to assess the complex interactions of the lung microbiome in response to mixed bacterial infections and their effects in people with CF

    Cystic Fibrosis from Laboratory to Bedside: The Role of A20 in NF-κB-Mediated Inflammation

    Get PDF
    Cystic fibrosis (CF) is a lifelong, inflammatory multi-organ disease and the most common lethal, genetic condition in Caucasian populations, with a median survival rate of 41.5 years. Pulmonary disease, characterized by infective exacerbations, bronchiectasis and increasing airway insufficiency is the most serious manifestation of this disease process, currently responsible for over 80% of CF deaths. Chronic dysregulation of the innate immune and host inflammatory response has been proposed as a mechanism central to this genetic condition, primarily driven by the nuclear factor &amp;#954;B (NF-&amp;#954;B) pathway. Chronic activation of this transcription factor complex leads to the production of pro-inflammatory cytokines and mediators such as IL-6, IL-8 and TNF-α. A20 has been described as a central and inducible negative regulator of NF-&amp;#954;B. This intracellular molecule negatively regulates NF-&amp;#954;B-driven pro-inflammatory signalling upon toll-like receptor activation at the level of TRAF6 activation. Silencing of A20 increases cellular levels of p65 and induces a pro-inflammatory state. We have previously shown that A20 expression positively correlates with lung function (FEV&lt;sub&gt;1&lt;/sub&gt;%) in CF. Despite improvement in survival rates in recent years, advancements in available therapies have been incremental. We demonstrate that the experimental use of naturally occurring plant diterpenes such as gibberellin on lipopolysaccharide-stimulated cell lines reduces IL-8 release in an A20-dependent manner. We discuss how the use of a novel bio-informatics gene expression connectivity-mapping technique to identify small molecule compounds that similarly mimic the action of A20 may lead to the development of new therapeutic approaches capable of reducing chronic airway inflammation in CF.</jats:p

    Evaluation of the Ability of LL-37 to Neutralise LPS In Vitro and Ex Vivo

    Get PDF
    BACKGROUND: Human cathelicidin LL-37 is a cationic antimicrobial peptide (AMP) which possesses a variety of activities including the ability to neutralise endotoxin. In this study, we investigated the role of LPS neutralisation in mediating LL-37's ability to inhibit Pseudomonas aeruginosa LPS signalling in human monocytic cells. METHODOLOGY/PRINCIPAL FINDINGS: Pre-treatment of monocytes with LL-37 significantly inhibited LPS-induced IL-8 production and the signalling pathway of associated transcription factors such as NF-κB. However, upon removal of LL-37 from the media prior to LPS stimulation, these inhibitory effects were abolished. These findings suggest that the ability of LL-37 to inhibit LPS signalling is largely dependent on extracellular LPS neutralisation. In addition, LL-37 potently inhibited cytokine production induced by LPS extracted from P. aeruginosa isolated from the lungs of cystic fibrosis (CF) patients. In the CF lung, polyanionic molecules such as glycosaminoglycans (GAGs) and DNA bind LL-37 and impact negatively on its antibacterial activity. In order to determine whether such interactions interfere with the LPS neutralising ability of LL-37, the status of LL-37 and its ability to bind LPS in CF sputum were investigated. Overall our findings suggest that in the CF lung, the ability of LL-37 to bind LPS and inhibit LPS-induced IL-8 production is attenuated as a result of binding to DNA and GAGs. However, LL-37 levels and its concomitant LPS-binding activity can be increased with a combination of DNase and GAG lyase (heparinase II) treatment. CONCLUSIONS/SIGNIFICANCE: Overall, these findings suggest that a deficiency in available LL-37 in the CF lung may contribute to greater LPS-induced inflammation during CF lung disease

    Connectivity mapping (ssCMap) to predict A20-inducing drugs and their antiinflammatory action in cystic fibrosis

    Get PDF
    Cystic fibrosis (CF) lung disease is characterized by chronic and exaggerated inflammation in the airways. Despite recent developments to therapeutically overcome the underlying functional defect in the cystic fibrosis transmembrane conductance regulator, there is still an unmet need to also normalize the inflammatory response. The prolonged and heightened inflammatory response in CF is, in part, mediated by a lack of intrinsic down-regulation of the proinflammatory NF-κB pathway. We have previously identified reduced expression of the NF-κB down-regulator A20 in CF as a key target to normalize the inflammatory response. Here, we have used publicly available gene array expression data together with a statistically significant connections’ map (sscMap) to successfully predict drugs already licensed for the use in humans to induce A20 mRNA and protein expression and thereby reduce inflammation. The effect of the predicted drugs on A20 and NF-κB(p65) expression (mRNA) as well as proinflammatory cytokine release (IL-8) in the presence and absence of bacterial LPS was shown in bronchial epithelial cells lines (16HBE14o−, CFBE41o−) and in primary nasal epithelial cells from patients with CF (Phe508del homozygous) and non-CF controls. Additionally, the specificity of the drug action on A20 was confirmed using cell lines with tnfαip3 (A20) knockdown (siRNA). We also show that the A20-inducing effect of ikarugamycin and quercetin is lower in CF-derived airway epithelial cells than in non-CF cells

    Post-traumatic Stress Disorder: focus on neuroinflammation

    No full text

    Expression of the inflammatory regulator A20 correlates with lung function in patients with cystic fibrosis

    Get PDF
    AbstractBackgroundA20 and TAX1BP1 interact to negatively regulate NF-κB-driven inflammation. A20 expression is altered in F508del/F508del patients. Here we explore the effect of CFTR and CFTR genotype on A20 and TAX1BP1 expression. The relationship with lung function is also assessed.MethodsPrimary nasal epithelial cells (NECs) from CF patients (F508del/F508del, n=7, R117H/F508del, n=6) and controls (age-matched, n=8), and 16HBE14o- cells were investigated. A20 and TAX1BP1 gene expression was determined by qPCR.ResultsSilencing of CFTR reduced basal A20 expression. Following LPS stimulation A20 and TAX1BP1 expression was induced in control NECs and reduced in CF NECs, broadly reflecting the CF genotype: F508del/F508del had lower expression than R117H/F508del. A20, but not TAX1BP1 expression, was proportional to FEV1 in all CF patients (r=0.968, p<0.001).ConclusionsA20 expression is reduced in CF and is proportional to FEV1. Pending confirmation in a larger study, A20 may prove a novel predictor of CF inflammation/disease severity
    corecore