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Significance Statement 

This study reports that publically available gene array expression data together with 

statistically significant connections’ map (sscMap) can successfully predict already licensed 

drugs to modify genes of interest. We applied this bioinformatics approach to the NF-κB 

regulator A20 (TNFAIP3), which is reduced in Cystic Fibrosis (CF) airway cells. sscMap 

predicted drugs that should or are predicted to induce A20 and normalise the inflammatory 

response in CF airways. Using airway epithelial cells we show that ikarugamycin and 

quercetin have anti-inflammatory effects mediated by induction of A20 in CF and non-CF 

airway epithelial cells. Using siRNA techniques we confirm that the anti-inflammatory effect 

of ikarugamycin and quercetin are mainly due to A20 induction as the anti-inflammatory 

effect is lacking in bronchial epithelial cells with A20 knockdown.  

The effect of fluvastatin, which was predicted not to modify A20, was also confirmed. We 

have identified a process whereby already licensed drugs can be successfully repositioned for 

chronic inflammatory airway diseases. 
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Abstract 

Cystic Fibrosis (CF) lung disease is characterised by a chronic and exaggerated inflammation 

in the airways. Despite recent developments to therapeutically overcome the underlying 

functional defect in CFTR (cystic fibrosis transmembrane conductance regulator), there is 

still an unmet need to also normalise the inflammatory response. The prolonged and 

heightened inflammatory response in CF is in part mediated by a lack of intrinsic 

downregulation of the pro-inflammatory NF-kB pathway.  We have previously identified 

reduced expression of the NF-κB down-regulator A20 in CF as a key target to normalise the 

inflammatory response. Here we have used publically available gene array expression data 

together with sscMap (statistically significant connections’ map) to successfully predict drugs 

already licensed for the use in humans to induce A20 mRNA and protein expression and 

thereby reduce inflammation. The effect of the predicted drugs on A20 and NF-kB(p65) 

expression (mRNA) as well as pro-inflammatory cytokine release (IL-8) in the presence and 

absence of bacterial LPS was shown in bronchial epithelial cells lines (16HBE14o-, 

CFBE41o-) and in primary nasal epithelial cells (PNECs) from patients with CF (Phe508del 

homozygous) and non-CF controls. Additionally, the specificity of the drug action on A20 

was confirmed using cell lines with TNFAIP3 (A20) knockdown (siRNA). We also show that 

the A20 inducing effect of ikarugamycin and quercetin is lower in CF derived airway 

epithelial cells than in non-CF cells.  
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Introduction 

The response to pathogens, recognised by pattern recognition receptors including Toll-like 

receptors (TLRs), triggers an acute innate immune response that is mediated by transcription 

factors such as nuclear factor-kappa-light-chain enhancer of B cells (NF-κB). NF-κB activation 

promotes the transcription of inflammatory mediators in a tightly regulated process. However, in 

individuals with underlying chronic inflammatory diseases, this regulation is compromised, 

leading to constitutive NF-κB activation and persistent inflammation (1-3) 

The development of new first-in-class medicines is costly (approximately $1.2 billion 

for a single FDA-approved drug) and takes between 10 and 15 years (4, 5). Many newly 

developed drugs perform well in the preclinical testing, but fail when tested in humans (6). Thus 

alternative approaches using predictive models to identify new drugs are needed. Gene expression 

connectivity mapping (www.broadinstitute.org/cmap/) is an advanced bioinformatics technique to 

establish the connections among biological states via gene expression profiles/signatures. One 

major application of connectivity mapping is to identify potential small molecules able to inhibit a 

disease state or regulate the expression of a small number of genes (7-9). We used an advanced 

version of connectivity mapping, sscMap (statistically significant connections’ map) (10), 

which has been successfully applied to phenotypic targeting and predicting effective drugs in 

cancer (10). However, this has not yet been applied to chronic inflammatory diseases. 

Cystic Fibrosis (CF) is a chronic multi-organ inflammatory disease, caused by mutations 

in the CFTR gene (Cystic Fibrosis Transmembrane Conductance regulator) expressed on apical 

epithelial surfaces. It is the most common lethal genetic disease in Caucasian populations. Lung 

disease is the primary cause of morbidity and mortality in CF, resulting from dehydration of 

epithelial surfaces and reduced mucociliary clearance as a consequence of the ionic imbalance 

created by CFTR mutation. This leads to a cycle of infection and inflammation associated with a 
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progressive reduction in lung function and eventual respiratory failure. A common feature of CF is 

the heightened, chronic inflammatory response to Pseudomonas aeruginosa (P. aeruginosa), 

driven by constitutive NF-κB activation in airway and peripheral blood cells (2, 3, 11). Primary 

nasal epithelial cells (PNECs) from patients with the common F508del/F508del mutation and a 

milder genotype (R117H/F508del), show a significant increase in NF-κB(p65) which correlates 

with disease severity (12).  

A20 (TNFAIP3) is a central negative regulator of NF-κB activation following stimulation 

of TLRs and/or TNF-receptor and regulates different signalling pathways such as NF-kB and 

interferon regulatory factor (IRF) signalling (13). A20 modifies classical immune cells (14, 15) 

as well as epithelial cells (12), endothelial cells (16), embryonic fibroblasts (17), osteoclasts 

(18) and pancreatic beta-cells (19) and diverse roles for A20 in innate immunity, apoptosis, 

autophagy and antigen processing (13, 15, 16, 20). Within the innate inflammatory immune 

response A20 regulates NF-κB signalling at the level of TRAF6 in mouse embryonic fibroblasts 

(MEFs) and osteoclasts (17, 18). In cultured human airway epithelial cells, A20 is rapidly induced 

by viral or bacterial compounds (21) and is essential for termination of the TLR4 signal (22). 

PNECs stimulated with P. aeruginosa LPS show a transient increase in A20, but CF PNECs 

display lower A20 expression basally and after LPS stimulation (12, 23). 

Therefore, A20 induction should have anti-inflammatory effects within the tightly 

regulated NF-kB signalling pathway as shown by the induction of A20 through gibberellin (GA3) 

in airway epithelial cells. GA3 induced A20, reduced IL-8 secretion, stabilised cytosolic IkBα and 

reduced NF-κB (p65) activation (24). Here we set out to identify additional compounds able to 

induce A20. Thus, we performed a compound search using gene expression connectivity mapping 

to identify existing drugs that could induce A20 expression.  

 

Results 
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1. Connectivity mapping (sscMap):  

 

The selection of gene array data and creation of the gene signature 

 

Data sets that passed the selection criteria contained human primary nasal epithelial cells (PNECs) 

and the human bronchial epithelial cell lines CFBE41o-, Calu-3 and IB3-1 analysed basally and 

after exposure to P. aeruginosa LPS (Table 1). In total 76 samples from 4 different published 

gene array data sets were used. Linear expression correlation and GO enrichment analysis for 

NF-κB pathway genes identified the closest correlates to A20. Table 2 shows the top 7 genes that 

subsequently served as the input to the connectivity mapping process. 

 

Prediction of drugs to induce A20 in airway epithelial cells 

This study sought small molecular compounds that may enhance A20 expression and as a 

confirming negative control, those compounds that may inhibit A20 expression. Table 3 

summarizes the top candidate drugs identified. The column entitled ‘significance’ shows the 

significance of drugs based on p values and the column ‘z-score’ shows the correlation of the 

drugs with the input gene signature. Positive z-scores indicate a positive correlation i.e. the input 

genes are induced when treated with the particular drug. The significant drugs with the highest 

positive z-scores along with a negative control were selected for laboratory validation. In addition 

to p values and z scores, stability of the connections was measured by altering the gene signature 

and the significance of the connections are given under the column ‘perturbation stability’. Drugs 

with perturbation stability 1 represent strong connections which remain significant with 

‘perturbation’ gene signatures. From these predictions two A20 inducing drugs (ikarugamycin and 
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quercetin) as well as one non-A20 inducing drug (fluvastatin) were chosen for further 

investigation. 

 

2. Gene expression of gene signature 

Expression of the genes identified as the A20/NF-kB gene signature in CF epithelial cells 

were analysed by qRT-PCR in 16HBE14o- and CFBE41o- cultured in the presence or 

absence of LPS for 0-24h (Figure 1).  

Basal expression: CFBE41o- show significantly lower mRNA expression for A20, ATF3, 

Rab5c and ICAM1 compared to 16HBE14o- (all p<0.05, n=5). Expression of DENNDA4 

and PSNE1 was also lower in CFBE41o- but this did not reach significance. 

LPS induced expression: In 16HBE14o-, A20 mRNA is rapidly induced with expression 

peaking 1h after LPS exposure (p<0.001 compared to medium, n=5), while CFBE41o- show 

significantly lower (at 1h p<0.001 vs. 16HBE14o-, n=5) and delayed (maximal induction at 

4-8 h, p<0.01 and 0.001 vs. medium, n=5) induction upon LPS stimulation.  After LPS, 

ATF3 and ICAM1 expression was significantly lower in CFBE41o- compared to 16HBE14o- 

(p<0.01, n=5). Pom121 and PSNE1 expression increased in CFBE41o- compared to medium 

(8h, p<0.05 and p<0.01) and in CFBE41o- compared to 16HBE14o- (8h, p<0.05 and 

p<0.001). 16HBE14o- showed a significant reduction in DENNDA4 and Rab5c expression 

compared to medium (1h, p<0.05 and 4h, p<0.05, respectively), but there was no significant 

change in the expression of these genes in CFBE41o-.  

 

3. Effect of A20 inducing drugs on cell lines  

LDH release in drug exposed 16HBE14o- and CFBE41o-: LDH release was measured after 

exposure to the drugs alone (0.01–1000 µM) and with LPS stimulation (supplement Figure 1S). 

Quercetin did not cause any LDH release. Overall fluvastatin was almost without effect on LDH; 
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the exceptions were a slight but statistically significant increase at 10 µM alone (CFBE41o-) and 

in the presence of LPS (in CFBE41o- and 16HBE14o-). Ikarugamycin (1, 100 µM) caused a 

significantly higher LDH release in both cell types. In LPS stimulated cells, 0.1 μM ikarugamycin 

and higher concentrations showed a higher LDH release compared to LPS alone, but this did not 

reach statistical significance (supplement Figure 1S). 

 

LPS stimulated IL-8 release in drug pre-treated 16HBE14o- and CFBE41o-: To assess the anti-

inflammatory potential of the selected drugs, cells were pre-treated with the drug for 1h, stimulated 

with LPS and the IL-8 release measured and the relative IC50 calculated (supplement S3). In 

16HBE14o-, all drugs reduced IL-8 release by at least 50% with an IC50 of 15.6 μM for 

ikarugamycin, 0.09 μM for quercetin and 0.11 μM for fluvastatin. In CFBE41o-, only quercitin 

(IC50 0.03 μM) and fluvastatin (IC50 0.001 μM) pre-treatment were able to reduce release by 50%.  

In contrast, pre-treatment of CFBE41o-  with 1 μM ikarugamycin caused a significant increase in 

IL-8 release compared to LPS alone (LPS 269.9 ± 47.9 pg/ml vs. 590.7 ± 82.6 pg/ml, p<0.05, 

n=5). Therefore, a meaningful calculation of the relative IC50 for IL-8 release in ikarugamycin 

treated CFBE41o- cells was not possible.  

 

A20 mRNA induction in drug treated 16HBE14o- and CFBE41o-: To elucidate if ikarugamycin 

and quercetin facilitate their anti-inflammatory action though the induction of A20 as predicted, 

A20 mRNA was determined by qRT-PCR. Fluvastatin was included as a negative control. Using 

the LDH and IL-8 release data two drug concentrations were selected for further investigations 

(supplement S3).  In 16HBE14o-, LPS stimulation caused a significant induction of A20 1h after 

stimulation (Figure 2). Ikarugamycin (0.01 µM) alone did not cause a significant induction of 

A20, but additional LPS stimulation caused a significant A20 induction at 24h (p<0.05 vs LPS 

24h). 1 μM ikarugamycin significantly induced A20 at 4h on its own, but the higher A20 
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expression in the presence of LPS (1-24h) did not reach statistical significance. Quercetin pre-

treatment did not induce significant levels of A20 mRNA at 0.1 μM, alone or in the presence of 

LPS. However, at 100 μM quercetin A20 mRNA was significantly induced alone at 1h and 4h 

(p<0.05 vs. medium 1h and 4h) and in the presence of LPS at 4h (p<0.05 vs. LPS 4h). Fluvastatin 

alone did not induce A20 mRNA at any time or concentration (Figure 2), in the presence of LPS 

fluvastatin pre-treatment caused a significant reduction in A20 mRNA at both concentrations 

tested (p<0.001 for 0.1 μM+LPS 1h vs. LPS 1h; p<0.05 for 1 μM+LPS 1h vs. LPS 1h). In 

CFBE41o-, LPS significantly induced A20 at 4h (p<0.05), but induction levels were lower than in 

16HBE14o- (Figure 2). Ikarugamycin (1 µM) induced significant levels of A20 at 4h and 24h 

(both p<0.05), this was further increased in the presence of LPS at 4h (p<0.05 vs LPS 4h) and 24h 

(p<0.01 vs LPS 24h). Quercetin treatment alone significantly induced A20 at 4h at both 

concentrations (p<0.05 0.1 μM vs. medium 4h and p<0.01 100 μM vs. medium 4h). In the 

presence of LPS, only 100 μM quercetin caused a significant induction of A20 at 24h (p<0.05). 

Fluvastatin alone did not induce A20 mRNA at any time or concentration (Figure 2), and in the 

presence of LPS fluvastatin caused a significant reduction in A20 mRNA at both concentrations 

tested (p<0.05 for 0.1 μM+LPS 4h vs. LPS 4h; p<0.05 for 1 μM+LPS 4h vs. LPS 4h). 

 

Effect of selected components on NF-kB (p65) mRNA in 16HBE14o- and CFBE41o-: Next we 

investigated if A20 induction altered NF-κB(p65) mRNA levels (Figure 2). LPS stimulation 

caused a significant induction of p65 1h after stimulation in 16HBE14o- (p<0.01 – p<0.001 vs. 

medium). Ikarugamycin (0.01 µM) was without significant effect on p65 mRNA. At 1 μM, 

ikarugamycin alone induced p65 at 24h (p<0.01 vs. medium 24h) and in the presence of LPS at 1h 

and 4h (both p<0.05 vs. LPS). Quercetin alone showed no effect on p65 mRNA levels, but when 

stimulated with LPS both concentrations of quercetin (0.1, 100 μM) significantly reduced p65 

mRNA levels at 1h (p<0.01 vs LPS 1h). Similar to quercetin, fluvastatin alone showed no effect 
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on p65 mRNA levels, but after LPS stimulation fluvastatin (0.1, 100 μM) significantly reduced 

p65 mRNA levels at 1h (p<0.001 and p<0.05 vs LPS 1h). In CFBE41o- LPS significantly induced 

p65 at 1h, 4h and 24h (p<0.05-0.001 vs medium) and overall CFBE41o- exhibited higher 

expression levels of p65 at 4h and 24h than 16HBE14o- (Figure 2). Ikarugamycin was without 

significant effect on p65 mRNA expression at any concentration or time point, although overall 

expression levels appear higher at 1 μM, when stimulated with LPS (Figure 2). In CFBE41o-, 

quercetin (0.1 μM) did not affect p65 mRNA levels. At 100 μM, quercetin significantly induced 

p65 (p<0.05: quercetin alone 100 μM 24h vs. medium 24h and quercetin 100 μM + LPS 24h vs. 

LPS 24h). Fluvastatin caused a significant reduction in p65 mRNA at both concentrations and all 

time points after LPS stimulation (p<0.05 and p<0.01 for 0.1 μM+LPS vs. LPS; p<0.05 and 

p<0.01 for 1 μM+LPS vs. LPS) (Figure 2). 

 

Effect of predicted drugs on A20 and p65 protein expression: We then determined the effect of 

the drugs on cytosolic A20 and p65 protein by Western Blotting using the same selected 

concentrations than before. Ikarugamycin (0.01 µM) induced A20 protein in both 16HBE14o- and 

CFBE41o-, with less A20 protein induction at 1 μM. Ikarugamycin also induced cytosolic p65 in 

both cell types (Figure 3a). Quercetin treatment caused a strong induction of A20 protein at both 

concentrations (0. 1, 100 μM) in 16HBE14o- and to a lower degree in CFBE41o-. Quercetin (100 

µM) reduced cytosolic p65 in 16HBE14o- and in CFBE41o- (Figure 3b). Fluvastatin did not 

induce A20 protein at either concentration (0.1, 1 μM) in both 16HBE14o- and CFBE41o- cells. 

Fluvastatin pretreatment reduced cytosolic p65 protein in 16HBE14o- cells though this was only 

apparent at the higher concentration in CFBE41o- (Figure 3c). 

 

Specificity of the drug effect on A20 mRNA expression using A20 siRNA: To confirm that the 

effect of the selected drugs is facilitated through A20 induction, we used siRNA to knock down 
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A20 expression in 16HBE14o- cells as previously described (30). Cells were pre-treated with 

quercetin or ikarugamycin prior to LPS and IL-8 determined. Results (Figure 4) showed that in 

16HBE14o- LPS significantly induced IL-8 (p<0.05 compared to untreated control), but when 

A20 is knocked down IL-8 increased further (although not significantly different from LPS 

alone). When cells are pre-treated with quercetin (100 μM) or ikarugamycin (1 μM), the LPS 

induced IL-8 release was significantly reduced (p<0.05). However, when A20 is knocked 

down IL-8 levels were not different from LPS control (Figure 4). 

 

4. Effect of A20 inducing drugs on PNECs 

 

Effect on IL-8 release: LPS significantly induced IL-8 release from PNECs from non-CF and CF 

patients (non-CF: p<0.01, CF: p<0.05, Wilcoxon paired test, Figure 5). IL-8 release from CF 

PNECs was significantly higher than from non-CF PNECs (600.6±62.8 pg/ml vs. 315.8±36.1 

pg/ml, p<0.01, Mann-Whitney test). In non-CF PNECs (Figure 5a), pre-treatment with 

ikarugamycin at 0.01 μM, but not at 1 μM significantly reduced LPS induced IL-8 release 

(p<0.05). In quercetin and fluvastatin treated non-CF PNECs only the higher concentrations tested 

(quercetin: 100 μM and fluvastatin: 1 μM significantly reduced IL-8 release (p<0.01 and p<0.05, 

respectively, Figure 5a). PNECs from patients with CF showed similar results with a significant 

IL-8 reduction at the lower concentration of ikarugamycin (0.01 μM, p<0.01) and the higher 

concentration of quercetin (100 μM, p<0.05). In CF PNECs fluvastatin treatment significantly 

reduced IL-8 release at both concentrations tested (0.1 μM, p<0.05; 1 μM, p<0.01, Figure 5b). 

 

A20 induction in PNECs: In PNECs from non-CF control subjects (Figure 6) LPS stimulation 

resulted in a rapid and significant upregulation of A20 mRNA within 1h and a peak expression at 

4h (p<0.05, LPS  vs. medium at 1h and 4h). Ikarugamycin alone at 0.01 μM increased A20 
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mRNA which reached significance at 24h (p<0.01) and in the presence of LPS this increase was 

significantly higher at 1h and 24h than LPS alone (p<0.05 and p<0.01 vs. LPS). Ikarugamycin (1 

μM) had no effect on A20 mRNA induction, either alone or in the presence of LPS. Quercetin (0.1 

μM) caused a significant induction of A20 compared to medium control at 1h, 4h and 24h (all 

p<0.01) with expression levels similar to those induced by LPS (Figure 6) and this was 

maintained the presence of LPS, with a peak A20 induction at 4h. The higher concentration of 

quercetin (100 μM) significantly induced A20 mRNA at 1h (p<0.05) and subsequent stimulation 

with LPS resulted in significantly increased A20 mRNA levels at 4h (p<0.05 vs LPS 4h). 

Fluvastatin treatment did not induce A20 mRNA expression, but 1μM reduced A20 mRNA at 4h 

LPS (Figure 6).  

In CF PNECs LPS induced A20 mRNA expression was lower than in non-CF PNECs, but 

in CF PNECs LPS induced significant levels of A20 mRNA 4h after LPS (p<0.05 vs. medium 

4h). Ikarugamycin at 0.01 μM (alone and in the presence of LPS) had no effect on A20 mRNA 

levels (Figure 6) but 1 μM ikarugamycin significantly induced A20 mRNA at 4 and 24h alone 

(p<0.05 vs medium control) and in the presence of LPS (p<0.05 and p<0.001 vs LPS).  Similarly, 

quercetin treatment with the lower concentration (0.01 μM) alone and in the presence of LPS had 

no effect on A20 mRNA levels (Figure 6), while 100 μM quercetin significantly induced A20 

mRNA alone (4h, p<0.05 vs medium control) and additionally above LPS induction (1h and 24h, 

both p<0.05 vs LPS). Similar to non-CF PNECs, fluvastatin treatment of CF PNECs had no 

significant effect on A20 mRNA expression levels. 

 

NF-κB (p65) induction in PNECs:  PNECs from non-CF control subjects respond to LPS 

exposure with a significant increase in NF-κB (p65) at 1h and 4h (p<0.001 vs medium control). 

Thereafter, p65 mRNA expression returns to its corresponding medium control value (Figure 6). 
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PNECs from patients with CF however show the expected high levels of p65 throughout the 24h 

studied (p<0.01 at 1h, p<0.05 at 4h and 24h vs medium control) (Figure 6).   

In non-CF PNECs, ikarugamycin treatment alone did not change p65 mRNA levels (vs 

medium control), but in the presence of LPS p65 mRNA was significantly reduced (p<0.05 at 1h, 

p<0.01 at 4h vs LPS). Overall the higher concentration of ikarugamycin induced p65 mRNA 

levels with a significant increase at 4h (p<0.05 vs medium control). However, in the presence of 

LPS, p65 levels remained not significantly different from those after LPS exposure at 1h and 24h, 

but were significantly lower compared to LPS alone at 4h (p<0.05) (Figure 6). The lower 

concentration of 0.01 μM quercetin alone did not modify basal p65 mRNA. After subsequent LPS 

challenge p65 mRNA significantly decreased at 1h (p<0.01 vs LPS), but then increased in a 

similar manner to LPS alone. However, 100 μM quercetin alone significantly reduced p65 

induction at 1h and 4h (p<0.05 and p0.01 vs. medium control). In the presence of LPS this 

reduction of p65 mRNA reached statistical significance at 4h and 24h (both p<0.05 vs LPS) 

(Figure 6). Fluvastatin (0.1 μM) induced p65 at 4h (p<0.05 vs. medium 4h), but p65 levels remain 

significantly lower when LPS is added (p<0.05, vs LPS at 1h and 4h). The higher concentration of 

fluvastatin (1 μM) did not change p65 levels alone, but after addition of LPS, p65 mRNA was 

initially reduced (1h p<0.05 vs LPS) but then induced similarly to LPS alone (Figure 6). 

 When PNECs from patients with CF were pre-treated with ikarugamycin, p65 levels dropped 

significantly at 0.01 μM ikarugamycin in the absence or presence of LPS (p<0.05-0.01). At the 

higher concentration of 1 μM p65 levels appeared lower, but this only reached statistical 

significance at 1h (p<0.05 vs LPS) (Figure 6). Pre-treatment of CF PNECs with quercetin did not 

affect p65 levels alone at either concentration tested, but at 0.1 μM quercetin in the presence of 

LPS significantly reduced p65 at 24h (p<0.05 vs LPS). Treatment with 100 μM quercetin 

significantly reduced p65 mRNA in the presence of LPS at all time points (all p<0.05 vs LPS) 

(Figure 6). Fluvastatin alone had no significant effect on p65 mRNA levels, but significantly 
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reduced LPS induced p65 at 1h, 4h and 24h (p<0.05 vs. medium 1h, 4h or 24h), while the higher 

concentration of fluvastatin (1 μM) showed no significant effect on basal or LPS induced p65 

mRNA (Figure 6). 

 

Discussion  

Airways infection and the subsequent inflammation are deleterious for patients suffering from CF. 

Current drugs targeting the mutated CFTR (potentiators/correctors) improve expression and 

function of CFTR on epithelial surfaces and patients showed improved lung function and 

reduced frequency of pulmonary exacerbations, hospitalization and use of intravenous 

antibiotics, bu augmented CFTR function failed to reduce inflammatory markers in sputum 

(e.g. IL-1,-6,-8) (25) and heterogeneous responses to the treatment have been reported (26), 

suggesting that CFTR correction/potentiation may not directly improve the underlying 

compromised immune response. The negative NF-κB regulator A20 (TNFAIP3) is reduced in 

CF airway epithelial cells, basally and after LPS stimulation (23) and is associated with 

markers of inflammation and decreased lung function (12). A20 silencing increased TRAF6 

and NF-κB activity (18), and A20 over-expression had protective effects in airway 

inflammation in ‘asthmatic mice’ (27), suggesting that A20 augmentation normalises the 

inflammatory response in the airways.  

In order to find agents to induce A20 in CF we employed sscMAP, which has been 

widely used in drug development uncovering potential new indications for existing drugs as 

well as predicting side effects (28). Using disease specific publicly available gene array data 

(GEO data sets), we used connectivity mapping to firstly identify the target gene (A20) related 

gene signature and to secondly predict already licensed drugs to induce A20 expression. We 

included a total of 76 gene array data from primary nasal epithelial cells and cell lines commonly 

used in CF research (Table 1). Gene array databases were first selected in August 2013, but a 
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recent (Jan 2016) search revealed no further significant published gene array data on CF 

(primary nasal) epithelial cells. 

 The applied linear regression model (Pearson’s correlation coefficient) is an 

established robust method to identify the correlates of a known gene expression estimating 

the strength of a linear relationship between two random normally distributed variables (29). 

The application of the linear regression model with GO (gene ontology) selection revealed a gene 

signature of 6 genes additionally to the seed gene A20 (Table 2) and we confirmed that the 

expression of these genes is similarly reduced in CF epithelial cells, basally and after LPS 

stimulation (Figure 1). The identified A20 correlates were ATF3, a transcriptional repressor that 

binds to cAMP response elements (CRE); RAB5C, a small ubiquitously expressed GTPase; 

DENND4A, which encodes the C-Myc Promoter Binding Protein (MBP-1); POM121, a 

nuclear transmembrane protein and essential component of the nuclear pore complex; ICAM1, 

a cell surface glycoprotein typically expressed on endothelial and immune cells, especially 

during inflammation and PSEN 1 (Presenilin 1), a catalytic component of γ-secretase and a 

DREAM binding protein. Further descriptions of these genes and their involvements in 

inflammation can be found in the online appendix. These genes, as a combined gene 

signature, were then input into the sscMAP process comparing the gene expression of the 

gene signature with the gene expression in the reference database (www.broadinstitute.org), 

which was obtained from systematic microarray gene expression profiling.  

SscMAP predicted a short list of drugs that should modify the expression profile of 

the gene signature genes, including A20. Those drugs included azacyclonol, ikarugamycin, 

quercetin and karakoline (Table 3). Azacyclonol is a drug used in psychotic individuals (30). 

We excluded azacyclonol, as its use requires special permission through relevant government 

authorities. Interestingly, the anti-histamine terfenadine is metabolised to azacyclonol and 

terfenadine (31). Karakoline is a highly toxic plant diterpenoid (32) and the pharmacological 
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effects of preparations of Aconitum roots are attributed to diterpenoid alkaloids (33). The 

anti-inflammatory activity of gibberellin (GA3), also a plant-derived diterpenoid, is mediated 

through A20 induction (24). We therefore selected ikarugamycin and quercetin for further 

studies. 

Ikarugamycin is a macrolide antibiotic with cytostatic effects against Gram-positive 

bacteria. We show that ikarugamycin exhibits anti-inflammatory properties in LPS stimulated 

airway cells. In 16HBE14o- ikarugamycin showed a dose-dependent reduction of LPS-

induced IL-8 release (supplement S4), through induction of A20 and reduction of p65 

(Figure 2). 16HBE14o- and CFBE41o- did not show reduced cell viability at concentrations 

lower than 1 μM, higher concentrations increased LDH release suggesting a cytotoxic effect 

(supplement S2). CFBE41o- appear more sensitive to ikarugamycin treatment (supplement 

S4), which made it not possible to calculate a meaningful relative IC50 value (supplement S3), 

although p65 protein expression was not increased (Figure 2). In HL-60 cells, ikarugamycin 

reduced cell viability and increased DNA fragmentation starting at 0.1 µM (IC50 of 0.22 μM), 

while MCF-7 cells and peripheral blood mononuclear cells showed higher resistance. 

Furthermore, ikarugamycin treatment of HL-60 cells caused a significant caspase activation, 

increase in intracellular calcium and p38 MAP kinase activation (34). However, investigating 

the pro-apoptotic mechanisms in bronchial epithelial cells was beyond the scope of this study. 

Nonetheless, our ikarugamycin data at near cytotoxic levels add valuable information:  

Firstly, sscMap correctly predicted that ikarugamycin would induce A20 mRNA but sscMap 

does not predict the physiological effect of the gene induction. CF cells overall show a 

limited ability to induce A20, however, our results show that – given the right stimulus – CF 

cells are indeed able to induce A20 mRNA and the high induction of A20 at near cytotoxic 

levels may be able to counteract the pro-apoptotic stimulation of ikarugamycin. 
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Quercetin, a flavonoid, is known for its anti-inflammatory effects. In vivo studies 

have shown antioxidant, anti-inflammatory, anti-tumour and even anti-infectious properties 

of quercetin, which are promoted through its effects on signalling pathways such as NF-κB 

(35). In lung epithelial cells, quercetin inhibited IL-1 and TNF-α induced IκBα degradation 

and NF-κB activity through modification of the MAPK pathway (AP-1) (36). SscMap 

correctly predicted that quercetin can induce A20 mRNA, adding a new mechanism for the 

anti-inflammatory effects of quercetin.  It also significantly reduced LPS-induced IL-8 

release in both cell types with a relative IC50 of 0.15 and 0.04 μM in 16HBE14o- and 

CFBE41o-, respectively. Quercetin at concentrations up to 1000 μM did not show any 

cytotoxicity, although in neuronal cell cultures quercetin higher than 100 μM was cytotoxic 

(37). Within the in vivo antioxidant network, quercetin has been described to be oxidised and 

to yield an ortho-quinone, which, in absence of reducing glutathione, can oxidise protein 

thiols impairing enzyme activities (38). We have not investigated the antioxidant status of our 

cell culture, but we took precautions to minimise oxidation when preparing our quercetin 

dilutions. 

To further investigate the A20-dependent mechanism of the anti-inflammatory action 

of quercetin and ikarugamycin, we used A20 knock down in 16HBE14o-. As previously 

described for the A20 inducing anti-inflammatory compound gibberellin (24), we were able 

to confirm that the anti-inflammatory effect of the predicted drugs was indeed mainly 

mediated by the induction of A20. 

We also tested fluvastatin, which was predicted not to affect or reduce A20 gene 

expression (negative z-score). Although fluvastatin exerted anti-inflammatory effects (IL-8) 

in both cell lines, our data show that this was not mediated by the induction of A20 (mRNA), 

clearly confirming the sscMap prediction. In asthma, fluvastatin inhibits eosinophil adhesion 

to ICAM-1 (39) and fibroblast proliferation (40). Using similar concentrations we did not 
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observe any reduced proliferation.  Fluvastatin at a concentration range similar to those we 

used, reduced basal and LPS-induced IL-8 release from LPS stimulated whole blood cells, 

with CF cells appearing more sensitive to fluvastatin than control cells (IC50: 19.1 μM in non-

CF cells, 4.6 μM in CF blood cells) (41). In isolated LPS-stimulated peripheral blood 

monocytes from patients with chronic kidney disease fluvastatin had a significant anti-

inflammatory effect (IL-8, IL-6) at a concentration range of 0.0001–1 μM (42). Patients with 

heart transplants receiving 40 mg fluvastatin/day for 4 weeks showed a significant reduction 

in total cholesterol levels and a maximum blood fluvastatin concentration of 2.11 and 3.77 

μM. These studies suggest that we have covered a physiologically relevant range of 

fluvastatin. However, fluvastatin metabolism may be affected by concomitant therapies, 

especially substances competing with cytochrome enzymes and in such cases fluvastatin 

levels may need to be monitored (43).  Any reactions with other therapies (as they would 

appear in patients with CF) were not investigated in our manuscript as they would have been 

beyond the scope of the study. 

Similar to ikarigamycin, fluvastatin has been described to have pro-apoptotic effects 

e.g. in human lymphoma cells, human smooth muscle cells and in rat neonatal cardiac 

myocytes or rat vascular smooth muscle cells (44, 45), mediated through activation of 

caspase-3, reactive oxygen species and activation of p38 MAPK (44, 55). However, statins, 

through their inhibition of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), but not through 

induction of A20, may still have therapeutic potential in airway and systemic inflammation in 

CF (41).  

Overall, our study shows that connectivity mapping (sscMap) can predict A20 

inducing drugs. Pre-treatment of cells with both ikarugamycin and quercetin reduces LPS-

induced IL-8 secretion by induction of A20. In non-CF PNECs both drugs upregulated A20 

and reduced IL-8 and p65 mRNA at lower concentrations than in cell lines. CF PNECs, 
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however, have a reduced and delayed A20 inducing response to LPS and to the tested drugs 

and a significant A20 induction appears at the higher concentration of the drugs tested, which 

might be near to the cytotoxic effect. A20 reduces apoptosis (46, 47) and mutational loss of 

A20 resulted in rapid apoptosis and inflammation in hematopoietic cells (48). We did not 

determine markers of apoptosis in our study, but the huge increase in A20 mRNA may 

indicate a possible counteraction to pro-apoptotic changes in response to ikarugamycin 

treatment. Of particular interest, this may indicate a higher susceptibility/sensitivity of CF 

cells to pro-apoptotic stimuli. 

Our study has several limitations. Firstly, for the sscMAP process a huge number of 

gene array samples are required and although the database search gave a high number of initial 

results, upon detailed inspection several gene array studies could not be included. Connectivity 

mapping uses gene array data run on Affimetrix platforms and we selected those performed 

on these platforms. Several published gene array studies were performed in cell lines. However, 

the majority of samples selected were PNECs (n=40), but we also included data from cell 

lines. Furthermore, every published dataset has been performed using a specific experimental 

design with respect to treatments and time points. We selected experiments that used either no 

stimulation or exposure to P.aeruginosa LPS or to P.aeruginosa itself. A sample size of 50-

100 individual samples is a statistically acceptable sample size to produce an unbiased result 

and we used 76 individual gene array samples.  

Secondly, the reference database was generated using different cell lines: MCF7, HL60, 

PC3 and SKMEL5. Although all of human origin, none of these cell lines are airway derived. We 

therefore confirmed the effect of the predicted drugs in airway relevant and disease specific cell 

lines, determined an effective drug concentration in our disease model and confirmed their effect 

in primary cells. Additionally, factors such as the interaction between various signalling pathways 
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and the interplay between genes can affect the functions of the predicted and validated drugs when 

used in humans.  

The aim of our study was to investigate the potential of sscMap to predict A20-

inducing drugs from a list of drugs already licenced for the use in humans to make them 

available for drug repositioning. As a proof of concept we have focused on the LPS induced 

expression of A20, p65 and cytokines IL-6 and IL-8. However, in addition to its direct 

regulation of TLR-induced NF-κB activation, A20 is also involved in the negative regulation 

of the of NLRP3 inflammasome via TLR3/4-(TRIF)-RIPK3 (49) may also inhibit 

inflammation induced regulated necrosis (necroptosis) via RIPK3 (50), adding further levels 

of action and complexity to the anti-inflammatory action of A20. Therefore, future work 

analysing further NF-κB driven cytokines such as TNFα and IL-1β would also indicate if the 

predicted drugs are able to modify A20 action on the inflammasome. 

 

Summary 

To date there is still a need for alternative anti-inflammatory drugs for patients with CF as 

restoring CFTR function with potentiators and correctors does not directly affect the inherent 

innate immune defect. The exaggerated inflammatory response is in part due to the lack of 

the NF-κB regulator A20 and pharmacological induction of A20 is anti-inflammatory.  We 

have shown here that sscMap is a potent tool to predict effective drugs that can modify A20 

without totally inhibiting NF-κB. This is particularly important in the clinical setting as 

pharmacological suppression of inflammation may increase the incidence of infective 

exacerbations (51). In addition, A20 inducing drugs have to be carefully adjusted as in 

addition to the A20 induction e.g. ikarugamycin can be pro-apoptotic.   A20 inhibits TNF-

induced pro-apoptotic signalling by inhibiting both, the activation of caspase 8 and the 

activation of c-Jun (52). However, neither the drug induced pro-apoptotic mechanisms nor 
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the A20 induced anti-apoptotic mechanisms have been investigated in this study, but our 

observation of cytotoxicity despite high anti-apoptotic A20 mRNA levels may suggest an 

overriding mechanism. Therefore, while sscMap successfully predicts drugs to modify A20, 

the effect of the candidate drugs must to be confirmed in a suitable model system to optimise 

treatments. 

Our study also suggests that pharmacological induction of A20 may be less efficient 

in CF airway cells, but given the appropriate stimulation, A20 induction is indeed possible. 

Tiruppathi et al. recently showed that A20 induction may be regulated not only via NF-κB, 

but also through the opposing effects of the repressor DREAM and transcription factor USF1 

(53). Future work will investigate if modifying the balance between A20 repressor and 

transcription factor in CF can more efficiently re-establish A20 induction.  
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Materials and Methods 

 

Selection of Gene Array data 

A search of PubMed GEO data sets (http://www.ncbi.nlm.nih.gov/gds/) was performed in August 

2013 using the search terms “Cystic Fibrosis”, “epithelial cells”, “airways” and “primary cells”.  

Data sets that passed the search criteria and were compatible to Affymetrix Human Genome 

U133A Array were selected.  

 

Connectivity Mapping (sscMap) 

Gene expression profiles were generated using Affimetrix Gene chip Microarray and the 

relative expression of treatment vs. control was sorted in descending order giving rise to 

~22000 rank ordered genes and their expression. 

 

Determination of the gene signature 

A gene signature (a set of genes that behaves in the same way or uniquely under a biological 

state) was created. A20 (TNFAIP3) was used as the known seed gene and a linear regression 

model was applied to create the gene signature from all selected GEO data. A20 correlates 

were identified by calculating the Pearson correlation coefficient between the expression of 

A20 and other genes using the formula (where x ̄ and y ̄ are the sample means of the two 

arrays of values and r was calculated in Excel: 

 

The correlation coefficient r demonstrates the association between A20 and other genes, 

either in a positive or negative direction. The significance of the observed correlations was 

measured by calculating the corresponding p values and applying a stringent p value 

threshold 1/N where N is the number of genes analysed. The significant r values were 
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selected as correlates of A20. Gene ontology (GO) enrichment analysis 

(http://geneontology.org/) was then applied to further filter the A20 correlates identifying 

those related to NF-κB. The subsequent gene signature (including A20) was used as the input 

query to evaluate the connection between them and the reference profiles (GEO, Accession 

Number GSE5258) (8). Based on the principles of Lamb’s connectivity mapping, we used a 

simpler and more robust method (9, 10), called sscMap (statistically significant connections' 

map), to determine the connections between the gene signature and the reference profile. The 

similarity between the gene signature and each gene expression reference profile was 

assessed via a connection score. Connection scores are a function of expression profile and 

the query gene signature, which is expected to reflect the underlying connection between 

them. The sscMap applies a robust and improved scoring system based on the following 

formulae:  

 

 

(Where gi represents the i th gene in the signature, s(gi) is its signed rank in the signature, and 

R(gi) is this gene's signed rank in the reference profile). To calculate the p value, after 

calculating the connection strength between a gene signature and the reference profile a large 

number of random gene signatures are created and the same number of connection scores are 

calculated and the proportion of scores higher than the observed score in absolute values is 

the p value. In addition to controlling false positives, sscMap is extended to measure the 

stability of the connections discovered by gene signature perturbation. In order to implement 

this, one gene is left out from the gene signature to derive ‘perturbation’ gene signature and 

the changes in the significant connections were observed. The connections which stay stable 

over the changes were given the perturbation stability score, defined as the fraction of times a 

drug remained significant under the perturbation process (54). 
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Cell Culture 

The bronchial epithelial cell lines 16HBE14o- (control) and CFBE41o- (CF, 

F508del/F508del), obtained from D. Gruenert, UCSF, USA were cultured as described (32). 

Primary nasal epithelial cells (PNECs) from CF patients (all F508del/F508del, n=5) and 

healthy volunteers (n=5, informed consent given, research ethics approval 07/NIR02/23) 

were cultured as previously described (55). Control participants did not have any acute 

airways disease at the time of sampling, or a history of any chronic airways inflammation.  

 

Cell culture stimulations 

Cells were exposed to the selected drugs (ikarugamycin, quercetin, fluvastatin (all Sigma-

Aldrich, SML0188, Q0125, SML0038, 0.01–1000 µM) at 0-1000 μM for 1 h prior to LPS 

stimulation (P. aeruginosa LPS, Sigma-Aldrich, L9143, 10 µg/mL, up to 24h). Stock 

solutions of the drugs were kept at -20°C for up to 3 months. To minimise oxidation or 

degradation of the compounds, the working dilutions were freshly prepared. 

 

Determination of LPS induced cytokine release (IL-6 and IL-8) 

IL-6 and IL-8 in cell-free culture supernatants were measured by a commercially available 

ELISA (PeproTech EC Ltd.) according to the manufacturer’s instructions.  

 

LDH Cytotoxicity assay 

Lactate dehydrogenase (LDH) release into cell culture supernatants was determined using a 

LDH-Cytotoxicity Assay Kit (BioVision Ltd.) according to the manufacturer’s instructions.  

 

Real time qPCR 
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Total RNA was extracted (GenElute™, RTN350, Sigma-Aldrich) and quantified. Equal 

amounts of RNA (250 ng) were reverse transcribed into cDNA (High-Capacity cDNA 

Reverse Transcription Kit, Applied Biosystems™) and quantitative RT-PCR performed 

(LightCycler thermal cycler system, Roche). Expression of A20, p65 and β-actin were 

assessed using primer sequences previously described (23) and given in supplement table S1. 

Relative expression to β-actin was calculated as ΔΔCt.  Jurkat cell cDNA acted as an internal 

calibrator for all experiments and was used to determine differences in basal gene expression. 

 

Western Blotting 

Cytosolic protein expression was determined by Western Blotting after extraction in RIPA 

buffer containing protease inhibitors (cOmplete™, Mini, Roche). Lysates were separated by 

SDS-PAGE and PVDF membranes incubated with 1 µg/ml primary antibody: A20 (ab74037, 

Abcam); p65 (C-20, Santa Cruz Biotechnology), washed, incubated with appropriate 

horseradish peroxidase-conjugated antibody and visualized on a BioRadChemi Doc XRS 

system (BioRad). Anti-GAPDH-HRP (ab-9484, Abcam) was used as a loading control. 

 

Transfections 

16HBE140- were seeded at 4x104 cells/well and allowed to attach overnight. Custom 

FlexiTube siRNA (QIAGEN, UK) was designed against TNFAIP3 and both cell lines 

transfected with 50 nM siRNA and Lipofectamine Transfection Reagent (Invitrogen, UK) 

over 72h. All experiments included mock transfection and scrambled controls. Gene silencing 

was assessed by qPCR as described above with knockdown of 74% ± 7.2; n=5) achieved. 

 

Statistical analysis  
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All data are presented as the means ± SEM. Differences between groups were analysed using 

the Kruskal-Wallis non-parametric ANOVA with Dunn’s post-test (*p<0.05, **p<0.01 and 

***p<0.001). $ denotes a significant difference compared to medium control, while * denotes 

significant differences between groups (CF vs. non-CF, comparing the same time points or 

LPS vs. treatment + LPS). The logarithmic inhibitor concentration versus the relative IL-8 

response achieving a 50% inhibition was calculated as the relative IC50. GraphPad Prism (La 

Jolla, California) was used to plot graphs and to analyse the data. 
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Legends: 
 
Figure 1: Gene expression profile of the gene signature genes associated with A20. 

16HBE14o- (grey) and CFBE41o- (green) were stimulated (LPS, 10 μg/ml 0-24 h) and 

mRNA levels of A20, ATF3, Rab5c, DENNDA4, POM121, ICAM-1 and PSNE1 determined 

as described. $ significant difference compared to medium control, * significant differences 

between genotypes. 
 

Figure 2: A20 and p65 mRNA expression of ikarugamycin, quercetin and fluvastatin 

treated cells. 16HBE14o- and CFBE41o- were pre-incubated with (a) ikarugamycin, (0.01, 1 

μM), (b) quercetin (0.1, 100 μM) or (c) fluvastatin (0.1, 1 μM) stimulated (LPS, 10 μg/ml, 0-

24 h), A20 mRNA determined (qRT-PCR) and expressed as A20/β-actin relative to the 

internal control. 

 
Figure 3: Effect of ikarugamycin, quercetin and fluvastatin on A20 and p65 protein 

expression. 16HBE14o- and CFBE41o- were pre-incubated with (a) ikarugamycin, (0.01, 1 

μM), (b) quercetin (0.1, 100 μM) or (c) fluvastatin (0.1, 1 μM) and stimulated (LPS, 10 

μg/ml, 0-24 h). Cytosolic A20 and p65 protein was determined by Western Blotting: 1 = Ctr, 

2 = LPS, 3 = drug at lower conc., 4 = drug at lower conc. + LPS, 5 = drug at higher conc., 6 = 

drug at higher conc., + LPS. 

 

Figure 4: The anti-inflammatory effect of ikarugamycin and quercetin is mediated by A20 

induction. 16HBE14o- with and without knock-down of A20 were pre-incubated with 

ikarugamycin, (1 μM) or quercetin (100 μM), stimulated and IL-8 analysed. Drug treatment 

caused a significant reduction in IL-8 (p<0.05) compared to LPS stimulation alone. A20 

knock-down resulted in a lack of the anti-inflammatory effect of the drug tested. 

 

Figure 5: Effect of ikarugamycin, quercetin and fluvastatin on IL-8 release from PNECs 

from (a) healthy controls and (b) patients with CF. The release of IL-8 (pg/ml) was 

determined using a commercially available IL-8 ELISA kit. Statistical analysis was 

performed using Wilcoxon paired ranked t-test. 
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Figure 6: Effect of ikarugamycin, quercetin and fluvastatin on A20 and p65 mRNA 

expression in PNECs from (a) healthy controls and (b) patients with CF. Cells were pre-

incubated with ikarugamycin, quercetin or fluvastatin at the indicated concentrations (0.01 – 

100 μM) and then stimulated (LPS, 10 μg/ml, 0- 24 h). A20 mRNA was determined by qRT-

PCR and expressed as A20/β-actin relative to internal control. 

 

Table 1: Selected GEO gene expression data sets selected for the connectivity mapping 

process. 

 
Table 2: Gene expression profile of NF-kB/A20 related genes in CF airway disease. Genes 

behaving in a similar way than the target gene A20 were determined using linear correlation 

analyses of the selected gene expression data sets. 

 

Table 3: Candidate compounds predicted to induce or reduce A20 expression. 

 
 


