21 research outputs found

    Synergistic induction of apoptosis by simultaneous disruption of the Bcl-2 and MEK/MAPK pathways in acute myelogenous leukemia

    Get PDF
    : Recent studies suggest that the Bcl-2 and mitogen-activated protein kinase (MAPK) pathways together confer an aggressive, apoptosis-resistant phenotype on acute myelogenous leukemia (AML) cells. In this study, we analyzed the effects of simultaneous inhibition of these 2 pathways. In AML cell lines with constitutively activated MAPK, MAPK kinase (MEK) blockade by PD184352 strikingly potentiated the apoptosis induced by the small-molecule Bcl-2 inhibitor HA14-1 or by Bcl-2 antisense oligonucleotides. Isobologram analysis confirmed the synergistic nature of this interaction. Moreover, MEK blockade overcame Bcl-2 overexpression-mediated resistance to the proapoptotic effects of HA14-1. Most importantly, simultaneous exposure to PD184352 significantly (P =.01) potentiated HA14-1-mediated inhibition of clonogenic growth in all primary AML samples tested. These findings show that the Bcl-2 and MAPK pathways are relevant molecular targets in AML and that their concurrent inhibition could be developed into a new therapeutic strategy for this disease

    Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia

    Get PDF
    SummaryBCL-2 proteins are critical for cell survival and are overexpressed in many tumors. ABT-737 is a small-molecule BH3 mimetic that exhibits single-agent activity against lymphoma and small-cell lung cancer in preclinical studies. We here report that ABT-737 effectively kills acute myeloid leukemia blast, progenitor, and stem cells without affecting normal hematopoietic cells. ABT-737 induced the disruption of the BCL-2/BAX complex and BAK-dependent but BIM-independent activation of the intrinsic apoptotic pathway. In cells with phosphorylated BCL-2 or increased MCL-1, ABT-737 was inactive. Inhibition of BCL-2 phosphorylation and reduction of MCL-1 expression restored sensitivity to ABT-737. These data suggest that ABT-737 could be a highly effective antileukemia agent when the mechanisms of resistance identified here are considered

    Long-term Incidence and risk of noncardiovascular and all-cause mortality in apparently healthy cats and cats with preclinical hypertrophic cardiomyopathy

    Get PDF
    Background Epidemiologic knowledge regarding noncardiovascular and all‐cause mortality in apparently healthy cats (AH) and cats with preclinical hypertrophic cardiomyopathy (pHCM) is limited, hindering development of evidence‐based healthcare guidelines. Objectives To characterize/compare incidence rates, risk, and survival associated with noncardiovascular and all‐cause mortality in AH and pHCM cats. Animals A total of 1730 client‐owned cats (722 AH, 1008 pHCM) from 21 countries. Methods Retrospective, multicenter, longitudinal, cohort study. Long‐term health data were extracted by medical record review and owner/referring veterinarian interviews. Results Noncardiovascular death occurred in 534 (30.9%) of 1730 cats observed up to 15.2 years. Proportion of noncardiovascular death did not differ significantly between cats that at study enrollment were AH or had pHCM (P = .48). Cancer, chronic kidney disease, and conditions characterized by chronic weight‐loss‐vomiting‐diarrhea‐anorexia were the most frequently recorded noncardiovascular causes of death. Incidence rates/risk of noncardiac death increased with age in AH and pHCM. All‐cause death proportions were greater in pHCM than AH (65% versus 40%, respectively; P < .001) because of higher cardiovascular mortality in pHCM cats. Comparing AH with pHCM, median survival (study entry to noncardiovascular death) did not differ (AH, 9.8 years; pHCM, 8.6 years; P = .10), but all‐cause survival was significantly shorter in pHCM (P = .0001). Conclusions and Clinical Importance All‐cause mortality was significantly greater in pHCM cats due to disease burden contributed by increased cardiovascular death superimposed upon noncardiovascular death

    Triptolide induces caspase-dependent cell death mediated via the mitochondrial pathway in leukemic cells

    No full text
    Triptolide, a diterpenoid isolated from the Chinese herb Tripterygium wilfordii Hook.f, has shown antitumor activities in a broad range of solid tumors. Here, we examined its effects on leukemic cells and found that, at 100 nM or less, it potently induced apoptosis in various leukemic cell lines and primary acute myeloid leukemia (AML) blasts. We then attempted to identify its mechanisms of action. Triptolide induced caspase-dependent cell death accompanied by a significant decrease in XIAP levels. Forced XIAP overexpression attenuated triptolide-induced cell death. Triptolide also decreased Mcl-1 but not Bcl-2 and Bcl-XL levels. Bcl-2 overexpression suppressed triptolide-induced apoptosis. Further, triptolide induced loss of the mitochondrial membrane potential and cytochrome C release. Caspase-9 knock-out cells were resistant, while caspase-8–deficient cells were sensitive to triptolide, suggesting criticality of the mitochondrial but not the death receptor pathway for triptolide-induced apoptosis. Triptolide also enhanced cell death induced by other anticancer agents. Collectively, our results demonstrate that triptolide decreases XIAP and potently induces caspase-dependent apoptosis in leukemic cells mediated through the mitochondrial pathway at low nanomolar concentrations. The potent antileukemic activity of triptolide in vitro warrants further investigation of this compound for the treatment of leukemias and other malignancies

    Up-regulation of MDR1 and induction of doxorubicin resistance by histone deacetylase inhibitor depsipeptide (FK228) and ATRA in acute promyelocytic leukemia cells

    No full text
    The multidrug resistance 1 (MDR1) gene product P-glycoprotein (P-gp) is frequently implicated in cross-resistance of tumors to chemotherapeutic drugs. In contrast, acute promyelocytic leukemia (APL) cells do not express MDR1 and are highly sensitive to anthracyclines. The combination of ATRA and the novel histone deacetylase inhibitor (HDACI) depsipeptide (FK228) induced P-gp expression and prevented growth inhibition and apoptosis in NB4 APL cells subsequently exposed to doxorubicin (DOX). ATRA/FK228 treatment after exposure to DOX, however, enhanced apoptosis. Both agents, ATRA or FK228, induced MDR1 mRNA. This effect was significantly enhanced by ATRA/FK228 administered in combination, due in part to increased H4 and H3-Lys9 acetylation of the MDR1 promoter and recruitment of the nuclear transcription factor Y alpha (NFYA) transcription activator to the CCAAT box. Cotreatment with specific P-gp inhibitor PSC833 reversed cytoprotective effects of ATRA/FK228. G1 cell-cycle arrest and p21 mRNA induction were also observed in response to ATRA/FK228, which may restrict DOX-induced apoptosis of cells in G2 phase. These results indicate that epigenetic mechanisms involving NF-YA transcription factor recruitment and histone acetylation are activated by ATRA and HDACI, induce MDR1 in APL cells, and point to the critical importance of mechanism-based sequential therapy in future clinical trials that combine HDAC inhibitors, ATRA, and anthracyclines

    Prostate-derived Sterile 20-like Kinases (PSKs/TAOKs) Phosphorylate Tau and are Activated in Tangle-bearing Neurons in Alzheimer's Disease

    No full text
    In Alzheimer disease (AD), the microtubule-associated protein tau is highly phosphorylated and aggregates into characteristic neurofibrillary tangles. Prostate-derived sterile 20-like kinases (PSKs/TAOKs) 1 and 2, members of the sterile 20 family of kinases, have been shown to regulate microtubule stability and organization. Here we show that tau is a good substrate for PSK1 and PSK2 phosphorylation with mass spectrometric analysis of phosphorylated tau revealing more than 40 tau residues as targets of these kinases. Notably, phosphorylated residues include motifs located within the microtubule-binding repeat domain on tau (Ser-262, Ser-324, and Ser-356), sites that are known to regulate tau-microtubule interactions. PSK catalytic activity is enhanced in the entorhinal cortex and hippocampus, areas of the brain that are most susceptible to Alzheimer pathology, in comparison with the cerebellum, which is relatively spared. Activated PSK is associated with neurofibrillary tangles, dystrophic neurites surrounding neuritic plaques, neuropil threads, and granulovacuolar degeneration bodies in AD brain. By contrast, activated PSKs and phosphorylated tau are rarely detectible in immunostained control human brain. Our results demonstrate that tau is a substrate for PSK and suggest that this family of kinases could contribute to the development of AD pathology and dementia
    corecore