28 research outputs found

    MPI Phantom Study with A High-Performing Multicore Tracer Made by Coprecipitation

    Get PDF
    Magnetic particle imaging (MPI) is a new imaging technique that detects the spatial distribution of magnetic nanoparticles (MNP) with the option of high temporal resolution. MPI relies on particular MNP as tracers with tailored characteristics for improvement of sensitivity and image resolution. For this reason, we developed optimized multicore particles (MCP 3) made by coprecipitation via synthesis of green rust and subsequent oxidation to iron oxide cores consisting of a magnetite/maghemite mixed phase. MCP 3 shows high saturation magnetization close to that of bulk maghemite and provides excellent magnetic particle spectroscopy properties which are superior to Resovist® and any other up to now published MPI tracers made by coprecipitation. To evaluate the MPI characteristics of MCP 3 two kinds of tube phantoms were prepared and investigated to assess sensitivity, spatial resolution, artifact severity, and selectivity. Resovist® was used as standard of comparison. For image reconstruction, the regularization factor was optimized, and the resulting images were investigated in terms of quantifying of volumes and iron content. Our results demonstrate the superiority of MCP 3 over Resovist® for all investigated MPI characteristics and suggest that MCP 3 is promising for future experimental in vivo studies

    Combined determination of plasma MMP2, MMP9, and TIMP1 improves the non-invasive detection of transitional cell carcinoma of the bladder

    Get PDF
    BACKGROUND: Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) play a major role in the maintenance of extracellular matrix homeostasis and are involved in the process of tumour invasion and metastasis in several malignant tumour entities. The goal of this study is to evaluate the diagnostic value of various circulating MMPs and TIMPs in blood plasma for a non-invasive detection of transitional cell carcinoma of the bladder (TCC). METHODS: In this study the concentrations of MMP1, MMP2, MMP3, MMP9, their inhibitors TIMP1, TIMP2, and the MMP1/TIMP1-complex (MTC1) were quantified in blood plasma with the sandwich enzyme-linked immunosorbent assay (ELISA). Blood plasma samples were investigated from 68 patients (non-metastasized, n = 57 and metastasized, n = 11) with TCC of the bladder and from 79 healthy controls. The mROC program was used to calculate the best two- and three- marker combinations. The diagnostic values for all single markers and the marker combinations were estimated both by the overall diagnostic performance index area under the ROC curve (AUC) and the sensitivity and specificity at cutoff limits with the highest diagnostic accuracy and at the 90% and 95% limits of sensitivity and specificity, respectively. RESULTS: The median MMP2 concentration was elevated in blood plasma in all patient groups with TCC in comparison to the controls (p < 0.001). The concentrations of TIMP1, TIMP2, and MTC1 in plasma probes were significantly lower from patients with non-metastasized TCC compared to the controls. MMP2 tested alone reached the highest sensitivity and specificity at 75%, respectively. The sensitivity and specificity increased when tested in combination with MMP9 and TIMP1 (97%, 94%, respectively). The combination of MMP9 and TIMP1 also showed an improved sensitivity (80%) and specificity (99%) than tested alone. CONCLUSION: MMP2 is a statistically significant marker in blood plasma for bladder cancer detection with an increased diagnostic value in combination with MMP9 and TIMP1. This study showed that the highest sensitivities and specificities are not obtained by testing each marker alone. As shown by the best two-marker combination, which includes MMP9 and TIMP1, the optimized combination does not always include the best single markers

    >

    No full text

    Tailored Magnetic Multicore Nanoparticles for Use as Blood Pool MPI Tracers

    No full text
    For the preclinical development of magnetic particle imaging (MPI) in general, and the exploration of possible new clinical applications of MPI in particular, tailored MPI tracers with surface properties optimized for the intended use are needed. Here we present the synthesis of magnetic multicore particles (MCPs) modified with polyethylene glycol (PEG) for use as blood pool MPI tracers. To achieve the stealth effect the carboxylic groups of the parent MCP were activated and coupled with pegylated amines (mPEG-amines) with different PEG-chain lengths from 2 to 20 kDa. The resulting MCP-PEG variants with PEG-chain lengths of 10 kDa (MCP-PEG10K after one pegylation step and MCP-PEG10K2 after a second pegylation step) formed stable dispersions and showed strong evidence of a successful reaction of MCP and MCP-PEG10K with mPEG-amine with 10 kDa, while maintaining their magnetic properties. In rats, the mean blood half-lives, surprisingly, were 2 and 62 min, respectively, and therefore, for MCP-PEG10K2, dramatically extended compared to the parent MCP, presumably due to the higher PEG density on the particle surface, which may lead to a lower phagocytosis rate. Because of their significantly extended blood half-life, MCP-PEG10K2 are very promising as blood pool tracers for future in vivo cardiovascular MPI
    corecore