190 research outputs found

    New Observations at the Slate Islands Impact Structure, Lake Superior

    Get PDF
    Slate Islands, a group of 2 large and several small islands, is located in northern Lake Superior, approximately 10 km south of Terrace Bay. Shatter cones, breccias and shock metamorphic features provide evidence that the Slate Islands Structure was formed as a result of asteroid or comet impact. Most of the island group is believed to represent the central uplift of a complex impact crater. The structure possibly has a diameter of about 32 km. For Sage (1978, 1991) shock metamorphic features, shatter cones and pervasive rock brecciation are the results of diatreme activity. The present investigations represent the second year of a co-operative study of the Lunar and Planetary Institute, Houston, Texas and the Field Services Section (Northwest) of the Ontario Geological Survey. The objective of this investigation is to come to a better understanding of the formation of mid-size impact structures on Earth and the planets of the solar system. Impact processes played a fundamental role in the formation of the planets and the evolution of life on Earth. Meteorite and comet impacts are not a phenomenon of the past. Last year, more than 20 pieces of the Shoemaker-Levy 9 impacted on Jupiter and the Tunguska comet impacted in Siberia in the early years of this century. The study of impact processes is a relatively young part of geoscience and much is still to be learnt by detailed field and laboratory investigations. The State Islands Structure has been selected for the present detailed investigations because of the excellent shoreline outcrops of rock units related to the impact. The structure is a complex impact crater that has been eroded so that important lithological and structural elements are exposed. We know of no other mid-size terrestrial impact structure with equal or better exposures. In this publication we present preliminary results of our 1994 and 1995 field and laboratory investigations. We have tentatively identified a few impact melt and a considerable number of suevite occurrences

    Analyzing the footprints of near-surface aqueous turbulence: An image processing-based approach

    Get PDF
    In this contribution, a detailed investigation of surface thermal patterns on the water surface is presented, with wind speeds ranging from 1 to 7 m s  − 1 and various surface conditions. Distinct structures can be observed on the surface—small-scale short-lived structures termed fish scales and larger-scale cold streaks that are consistent with the footprints of Langmuir circulations. The structure of the surface heat pattern depends strongly on wind-induced stress. Consistent behavior regarding the spacing of cold streaks can be observed in a range of laboratory facilities when expressed as a function of water-sided friction velocity, u * . This behavior systematically decreased until a point of saturation at u *  = 0.7 cm/s. We present a new image processing-based approach to the analysis of the spacing of cold streaks based on a machine learning approach to classify the thermal footprints of near-surface turbulence. Comparison is made with studies of Langmuir circulation and the following key points are found. Results suggest a saturation in the tangential stress, anticipating that similar behavior will be observed in the open ocean. A relation to Langmuir numbers shows that thermal footprints in infrared images are consistent with Langmuir circulations and depend strongly on wind wave conditions

    Clastic Breccias at the Slates Islands Complex Impact Structure, Northern Lake Superior

    Get PDF
    About 150 impact craters are known on Earth and each year several structures are added to this number. The general geology of the Slate Islands archipelago has been described by Sage (1991) and a short summary based on Sage's work is given in Dressler et al. (1995). The reader is referred to these publications for information on the bedrock geology of the island group. Early studies on the Slate Islands impact structure include: Halls and Grieve (1976), Grieve and Robertson (1976) and Stesky and Halls (1983). In this report, we provide a summary of the impact process as presently understood. We also present some of the results of our laboratory investigations conducted in 1995 and 1996. We describe in some detail the various clastic breccias encountered on the islands during our 1994 and 1995 field work and relate them to the various phases of the impact process. A more encompassing treatise on the breccias has been submitted for publication. (Dressler and Sharpton 1996)

    Fast Convergence for Object Detection by Learning how to Combine Error Functions

    Get PDF
    In this paper, we introduce an innovative method to improve the convergence speed and accuracy of object detection neural networks. Our approach, CONVERGE-FAST-AUXNET, is based on employing multiple, dependent loss metrics and weighting them optimally using an on-line trained auxiliary network. Experiments are performed in the well-known RoboCup@Work challenge environment. A fully convolutional segmentation network is trained on detecting objects' pickup points. We empirically obtain an approximate measure for the rate of success of a robotic pickup operation based on the accuracy of the object detection network. Our experiments show that adding an optimally weighted Euclidean distance loss to a network trained on the commonly used Intersection over Union (IoU) metric reduces the convergence time by 42.48%. The estimated pickup rate is improved by 39.90%. Compared to state-of-the-art task weighting methods, the improvement is 24.5% in convergence, and 15.8% on the estimated pickup rate.Comment: Accepted for publication at IROS 201

    Polarizable atomic multipole X-ray refinement: application to peptide crystals

    Get PDF
    A method to accelerate the computation of structure factors from an electron density described by anisotropic and aspherical atomic form factors via fast Fourier transformation is described for the first time

    Constant-pH simulations with the polarizable atomic multipole AMOEBA force field

    Get PDF
    Accurately predicting protein behavior across diverse pH environments remains a significant challenge in biomolecular simulations. Existing constant-pH molecular dynamics (CpHMD) algorithms are limited to fixed-charge force fields, hindering their application to biomolecular systems described by permanent atomic multipoles or induced dipoles. This work overcomes these limitations by introducing the first polarizable CpHMD algorithm in the context of the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field. Additionally, our implementation in the open-source Force Field X (FFX) software has the unique ability to handle titration state changes for crystalline systems including flexible support for all 230 space groups. The evaluation of constant-pH molecular dynamics (CpHMD) with the AMOEBA force field was performed on 11 crystalline peptide systems that span the titrating amino acids (Asp, Glu, His, Lys, and Cys). Titration states were correctly predicted for 15 out of the 16 amino acids present in the 11 systems, including for the coordination of Z

    The Automated Inspection of Opaque Liquid Vaccines

    Get PDF
    In the pharmaceutical industry the screening of opaque vaccines containing suspensions is currently a manual task carried out by trained human visual inspectors. We show that deep learning can be used to effectively automate this process. A moving contrast is required to distinguish anomalies from other particles, reflections and dust resting on a vial's surface. We train 3D-ConvNets to predict the likelihood of 20-frame video samples containing anomalies. Our unaugmented dataset consists of hand-labelled samples, recorded using vials provided by the HAL Allergy Group, a pharmaceutical company. We trained ten randomly initialized 3D-ConvNets to provide a benchmark, observing mean AUROC scores of 0.94 and 0.93 for positive samples (containing anomalies) and negative (anomaly-free) samples, respectively. Using Frame-Completion Generative Adversarial Networks we: (i) introduce an algorithm for computing saliency maps, which we use to verify that the 3D-ConvNets are indeed identifying anomalies; (ii) propose a novel self-training approach using the saliency maps to determine if multiple networks agree on the location of anomalies. Our self-training approach allows us to augment our data set by labelling 217,888 additional samples. 3D-ConvNets trained with our augmented dataset improve on the results we get when we train only on the unaugmented dataset.Comment: 8 pages, 5 Figures, 3 Tables, ECAI 2020 Conference Proceeding

    Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential

    Get PDF
    We have calculated the binding free energies of a series of benzamidine-like inhibitors to trypsin with a polarizable force field using both explicit and implicit solvent approaches. Free energy perturbation has been performed for the ligands in bulk water and in protein complex with molecular dynamics simulations. The calculated binding free energies are well within the accuracy of experimental measurement and the direction of change is predicted correctly in call cases. We analyzed the molecular dipole moments of the ligands in gas, water and protein environments. Neither binding affinity nor ligand solvation free energy in bulk water shows much dependence on the molecular dipole moments of the ligands. Substitution of the aromatic or the charged group in the ligand results in considerable change in the solvation energy in bulk water and protein whereas the binding affinity varies insignificantly due to cancellation. The effect of chemical modification on ligand charge distribution is mostly local. Replacing benzene with diazine has minimal impact on the atomic multipoles at the amidinium group. We have also utilized an implicit solvent based end-state approach to evaluate the binding free energies of these inhibitors. In this approach, the polarizable multipole model combined with Poisson-Boltzmann/surface area (PMPB/SA) provides the electrostatic interaction energy and the polar solvation free energy. Overall the relative binding free energies obtained from the PMPB/SA model are in good agreement with the experimental data
    • …
    corecore