45 research outputs found

    Effects of smoking on the genetic risk of obesity: the population architecture using genomics and epidemiology study

    Get PDF
    Abstract Background Although smoking behavior is known to affect body mass index (BMI), the potential for smoking to influence genetic associations with BMI is largely unexplored. Methods As part of the ‘Population Architecture using Genomics and Epidemiology (PAGE)’ Consortium, we investigated interaction between genetic risk factors associated with BMI and smoking for 10 single nucleotide polymorphisms (SNPs) previously identified in genome-wide association studies. We included 6 studies with a total of 56,466 subjects (16,750 African Americans (AA) and 39,716 European Americans (EA)). We assessed effect modification by testing an interaction term for each SNP and smoking (current vs. former/never) in the linear regression and by stratified analyses. Results We did not observe strong evidence for interactions and only observed two interactions with p-values <0.1: for rs6548238/TMEM18, the risk allele (C) was associated with BMI only among AA females who were former/never smokers (β = 0.018, p = 0.002), vs. current smokers (β = 0.001, p = 0.95, pinteraction = 0.10). For rs9939609/FTO, the A allele was more strongly associated with BMI among current smoker EA females (β = 0.017, p = 3.5x10-5), vs. former/never smokers (β = 0.006, p = 0.05, pinteraction = 0.08). Conclusions These analyses provide limited evidence that smoking status may modify genetic effects of previously identified genetic risk factors for BMI. Larger studies are needed to follow up our results. Clinical Trial Registration NCT0000061

    DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity

    Get PDF
    Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity

    Interaction between the α-T catenin gene (VR22) and APOE in Alzheimer's disease

    No full text
    Background: APOE is the only gene that has been consistently replicated as a risk factor for late onset Alzheimer's disease. Several recent studies have identified linkage to chromosome 10 for both risk and age of onset, suggesting that this region harbours genes that influence the development of the disease. A recent study reported association between single nucleotide polymorphisms (SNPs) in the VR22 gene (CTNNA3) on chromosome 10 and plasma levels of Aß42, an endophenotype related to Alzheimer's disease. Objective: To assess whether polymorphisms in the VR22 gene are associated with Alzheimer's disease in a large sample of Alzheimer's disease families and an independent set of unrelated cases and controls. Results: Several SNPs showed association in either the family based or case–control analyses (p<0.05). The most consistent findings were with SNP6, for which there was significant evidence of association in both the families and the unrelated cases and controls. Furthermore, there was evidence of significant interaction between APOE-4 and two of the VR22 SNPs, with the strongest evidence of association being concentrated in individuals carrying APOE-4. Conclusions: This study suggests that VR22 or a nearby gene influences susceptibility to Alzheimer's disease, and the effect is dependent on APOE status
    corecore