37 research outputs found

    The forward physics facility at the high-luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential

    The Physics of the B Factories

    Get PDF

    Discrimination between Paralogs using Microarray Analysis: Application to the Yap1p and Yap2p Transcriptional Networks

    Get PDF
    Ohno [Ohno, S. (1970) in Evolution by Gene Duplication, Springer, New York] proposed that gene duplication with subsequent divergence of paralogs could be a major force in the evolution of new gene functions. In practice the functional differences between closely related homologues produced by duplications can be subtle and difficult to separate experimentally. Here we show that DNA microarrays can distinguish the functions of two closely related homologues from the yeast Saccharomyces cerevisiae, Yap1p and Yap2p. Although Yap1p and Yap2p are both bZIP transcription factors involved in multiple stress responses and are 88% identical in their DNA binding domains, our work shows that these proteins activate nonoverlapping sets of genes. Yap1p controls a set of genes involved in detoxifying the effects of reactive oxygen species, whereas Yap2p controls a set of genes over represented for the function of stabilizing proteins. In addition we show that the binding sites in the promoters of the Yap1p-dependent genes differ from the sites in the promoters of Yap2p-dependent genes and we validate experimentally that these differences are important for regulation by Yap1p. We conclude that while Yap1p and Yap2p may have some overlapping functions they are clearly not redundant and, more generally, that DNA microarray analysis will be an important tool for distinguishing the functions of the large numbers of highly conserved genes found in all eukaryotic genomes
    corecore