60 research outputs found

    HIV-1 subtype B determinants of neuropathogenesis: viral characteristics associated with dementia

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) is a severe neurological disease resulting from HIV-1 infection of cells in the central nervous system (CNS). Significant genetic compartmentalization has been detected between virus in the periphery and virus in the cerebrospinal fluid (CSF)/CNS in subjects with dementia. Although progress has been made over the past thirty years in understanding HIV-1-associated dementia, the mechanisms leading to the development of neurological disease during HIV-1 infection remain unclear. In this dissertation, I examine the neuropathogenesis of HIV-1 over the course of infection by determining the viral characteristics associated with the development of dementia in HIV-1-infected adults. Compartmentalization between the periphery and the CNS has not been previously described for subjects with primary HIV-1 infection. I detected compartmentalized HIV-1 variants in the CSF of a subset of primary infection subjects, and using longitudinal analyses I found that compartmentalization in the CSF can be resolved during primary infection. Compartmentalized HIV-1 variants in the CNS/CSF of subjects with dementia are thought to replicate in long-lived perivascular macrophages and/or microglia in the CNS. I examined the source of compartmentalized HIV-1 in the CSF of subjects with neurological disease and in neurologically-asymptomatic subjects who were initiating antiretroviral therapy. In subjects with neurological disease, I found that rapid decay of CSF-compartmentalized variants was associated with high CSF pleocytosis, whereas slow decay measured for CSF-compartmentalized variants in subjects with neurological disease was correlated with low peripheral CD4 cell count and reduced CSF pleocytosis. The longer half-lives I detected suggest that compartmentalized HIV-1 in the CSF of some HAD subjects may be originating from a long-lived cell type in the brain. I also examined the viral genotypes and phenotypes associated with the CSF-compartmentalized variants with differential decay rates. I detected significant compartmentalization in the CSF HIV-1 population for subjects with neurological disease, and the envelope phenotype characterization revealed two distinct classes of viral encephalitis associated with extensive genetic compartmentalization and the clinical diagnosis of dementia. These results will form the basis of future studies to decipher the biology underlying viral evolution and enhanced HIV-1 replication in the CNS

    Identification and recovery of minor HIV-1 variants using the heteroduplex tracking assay and biotinylated probes

    Get PDF
    We describe a method to identify and recover minor human immunodeficiency virus type 1 (HIV-1) sequence variants from a complex population. The original heteroduplex tracking assay (HTA) was modified by incorporating a biotin tag into the probe to allow for direct sequence determination of the query strand. We used this approach to recover sequences from minor HIV-1 variants in the V3 region of the env gene, and to identify minor drug-resistant variants in pro. The biotin-HTA targeting of the V3 region of env allowed us to detect minor V3 variants, of which 45% were classified as CXCR4-using viruses. In addition, the biotin-protease HTA was able to detect mixtures of wild-type sequence and drug-resistance mutations in four subjects that were not detected by bulk sequence analysis. The biotin-HTA is a robust assay that first separates genetic variants then allows direct sequence analysis of major and minor variants

    Compartmentalized Replication of R5 T Cell-Tropic HIV-1 in the Central Nervous System Early in the Course of Infection

    Get PDF
    Compartmentalized HIV-1 replication within the central nervous system (CNS) likely provides a foundation for neurocognitive impairment and a potentially important tissue reservoir. The timing of emergence and character of this local CNS replication has not been defined in a population of subjects. We examined the frequency of elevated cerebrospinal fluid (CSF) HIV-1 RNA concentration, the nature of CSF viral populations compared to the blood, and the presence of a cellular inflammatory response (with the potential to bring infected cells into the CNS) using paired CSF and blood samples obtained over the first two years of infection from 72 ART-naïve subjects. Using single genome amplification (SGA) and phylodynamics analysis of full-length env sequences, we compared CSF and blood viral populations in 33 of the 72 subjects. Independent HIV-1 replication in the CNS (compartmentalization) was detected in 20% of sample pairs analyzed by SGA, or 7% of all sample pairs, and was exclusively observed after four months of infection. In subjects with longitudinal sampling, 30% showed evidence of CNS viral replication or pleocytosis/inflammation in at least one time point, and in approximately 16% of subjects we observed evolving CSF/CNS compartmentalized viral replication and/or a marked CSF inflammatory response at multiple time points suggesting an ongoing or recurrent impact of the infection in the CNS. Two subjects had one of two transmitted lineages (or their recombinant) largely sequestered within the CNS shortly after transmission, indicating an additional mechanism for establishing early CNS replication. Transmitted variants were R5 T cell-tropic. Overall, examination of the relationships between CSF viral populations, blood and CSF HIV-1 RNA concentrations, and inflammatory responses suggested four distinct states of viral population dynamics, with associated mechanisms of local viral replication and the early influx of virus into the CNS. This study considerably enhances the generalizability of our results and greatly expands our knowledge of the early interactions of HIV-1 in the CNS

    Cross-sectional characterization of HIV-1 env compartmentalization in cerebrospinal fluid over the full disease course

    Get PDF
    To characterize HIV-1 env compartmentalization between cerebrospinal fluid (CSF) and peripheral blood plasma over all stages of the HIV-1 disease course, and to determine the relationship between the extent of CSF HIV-1 env compartmentalization and clinical neurologic disease status

    Imprinted antibody responses against SARS-CoV-2 Omicron sublineages

    Full text link
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages carry distinct spike mutations resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters elicit plasma-neutralizing antibodies against Omicron BA.1, BA.2, BA.2.12.1, and BA.4/5, and that breakthrough infections, but not vaccination alone, induce neutralizing antibodies in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1, BA.2, and BA.4/5 receptor-binding domains, whereas Omicron primary infections elicit B cells of narrow specificity up to 6 months after infection. Although most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant–neutralizing antibody that is a strong candidate for clinical development

    Imprinted antibody responses against SARS-CoV-2 Omicron sublineages

    Full text link
    SARS-CoV-2 Omicron sublineages carry distinct spike mutations and represent an antigenic shift resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters result in potent plasma neutralizing activity against Omicron BA.1 and BA.2 and that breakthrough infections, but not vaccination-only, induce neutralizing activity in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1 and BA.2 receptor-binding domains whereas Omicron primary infections elicit B cells of narrow specificity. While most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant antibody, that is unaffected by any Omicron lineage spike mutations and is a strong candidate for clinical development

    HIV-1 Replication in the Central Nervous System Occurs in Two Distinct Cell Types

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) can lead to the development of HIV-1-associated dementia (HAD). We examined the virological characteristics of HIV-1 in the cerebrospinal fluid (CSF) of HAD subjects to explore the association between independent viral replication in the CNS and the development of overt dementia. We found that genetically compartmentalized CCR5-tropic (R5) T cell-tropic and macrophage-tropic HIV-1 populations were independently detected in the CSF of subjects diagnosed with HIV-1-associated dementia. Macrophage-tropic HIV-1 populations were genetically diverse, representing established CNS infections, while R5 T cell-tropic HIV-1 populations were clonally amplified and associated with pleocytosis. R5 T cell-tropic viruses required high levels of surface CD4 to enter cells, and their presence was correlated with rapid decay of virus in the CSF with therapy initiation (similar to virus in the blood that is replicating in activated T cells). Macrophage-tropic viruses could enter cells with low levels of CD4, and their presence was correlated with slow decay of virus in the CSF, demonstrating a separate long-lived cell as the source of the virus. These studies demonstrate two distinct virological states inferred from the CSF virus in subjects diagnosed with HAD. Finally, macrophage-tropic viruses were largely restricted to the CNS/CSF compartment and not the blood, and in one case we were able to identify the macrophage-tropic lineage as a minor variant nearly two years before its expansion in the CNS. These results suggest that HIV-1 variants in CSF can provide information about viral replication and evolution in the CNS, events that are likely to play an important role in HIV-associated neurocognitive disorders
    corecore