127 research outputs found

    Cholesterol-binding by the yeast CAP family member pry1 requires the presence of an aliphatic side chain on cholesterol

    Get PDF
    Pathogen-related yeast protein 1 (Pry1) is a Saccharomyces cerevisiae member of the CAP/SCP/TAPS superfamily. Although, CAP proteins have been proposed to be implicated in a number of physiological processes, such as pathogen virulence, sperm maturation and fertilization, host-pathogen interactions and defense mechanisms, the molecular mode of action of these proteins is poorly understood. CAP proteins are mostly secreted and they are stable in the extracellular space over a wide a range of conditions. All members of this superfamily contain a common CAP domain of approximately 150 amino acids, which adopts a unique α-β-α sandwich fold. We have previously shown that the yeast CAP family members act as sterol-binding and -export proteins in vivo and that the Pry proteins bind cholesterol and cholesteryl acetate in vitro. The conserved CAP domain of Pry1 is necessary and sufficient for sterol binding. Based on these observations, it is conceivable that CAP proteins exert their biological function through a common mechanism, such as binding and sequestration of sterols or related small hydrophobic compounds. Here we analyze the ligand specificity of Pry1 in more detail and show that the presence of the aliphatic isooctane side chain of the sterol but not the 3-hydroxyl group is important for binding to Pry1

    Yeh1 constitutes the major steryl ester hydrolase under heme-deficient conditions in <i>Saccharomyces cerevisiae</i>

    Get PDF
    Steryl esters are stored in intracellular lipid droplets from which they are mobilized upon demand and hydrolyzed to yield free sterols and fatty acids. The mechanisms that control steryl ester mobilization are not well understood. We have previously identified a family of three lipases of Saccharomyces cerevisiae that are required for efficient steryl ester hydrolysis, Yeh1, Yeh2, and Tgl1 (R. Köffel, R. Tiwari, L. Falquet, and R. Schneiter, Mol. Cell. Biol. 25:1655-1668, 2005). Both Yeh1 and Tgl1 localize to lipid droplets, whereas Yeh2 is localized to the plasma membrane. To characterize the precise function of these three partially redundant lipases, we examined steryl ester mobilization under heme-deficient conditions. S. cerevisiae is a facultative anaerobic organism that becomes auxotrophic for sterols and unsaturated fatty acids in the absence of molecular oxygen. Anaerobic conditions can be mimicked in cells that are deficient for heme synthesis. We here report that Yeh1 is the sole active steryl ester hydrolase under such heme-deficient conditions, indicating that Yeh1 is activated whereas Yeh2 and Tgl1 are inactivated by the lack of heme. The heme-dependent activation of Yeh1 is mediated at least in part by an increase in steady-state levels of Yeh1 at the expense of Yeh2 and Tgl1 in exponentially growing cells. This increase in steady-state levels of Yeh1 requires Rox3, a component of the mediator complex that regulates transcription by RNA polymerase II. These data thus provide the first link between fat degradation and the transcriptional control of lipase activity in yeast

    The role of lipids in the biogenesis of integral membrane proteins

    Get PDF
    Most integral membrane proteins are cotranslationally inserted into the lipid bilayer. In prokaryotes, membrane insertion of the nascent chain takes place at the plasma membrane, whereas in eukaryotes insertion takes place into the endoplasmatic reticulum. In both kingdoms of life, however, the same membrane that acquaints the newly born membrane protein also synthesizes the bilayer lipids and thus ensures the balanced growth of the membrane as a whole. Recent evidence indicates that the lipid composition of the host membrane can determine the fate of the newborn membrane protein, as it can affect (1) the efficiency of translocation, (2) the topology of the resulting membrane protein, (3) its stability, (4) its assembly into oligomeric complexes, (5) its transport and sorting along the secretory pathway, and (6) its enzymatic activity. The lipid composition of the membrane thus can affect the biogenesis and function of integral membrane proteins at multiple steps along its biogenetic pathway. While understanding this interdependence between bilayer lipids and protein biogenesis is interesting in its own right, careful consideration of a potential host's membrane lipid composition may also allow optimization of the yield and activity of membrane proteins that are expressed in a heterologous organism. Here, we review and discuss some examples that illustrate the interdependence between bilayer lipids and the biogenesis of integral membrane protein

    Following the flux of long-chain bases through the sphingolipid pathway in vivo using mass spectrometry

    Get PDF
    Sphingolipids are essential components of the plasma membrane. Their synthesis is tightly controlled by regulatory proteins, which impinge on the rate-limiting step of the pathway, the condensation of serine and palmitoyl-CoA to long-chain base (LCB). The subsequent conversion of LCB to ceramide by ceramide synthase (CerS) is also tightly regulated, because both the accumulation of LCB as well as an excess of ceramide is toxic. Here we describe an in vivo assay to monitor the flux of LCB through the sphingolipid pathway in yeast. Cells are provided with nonnatural odd-chain sphingosine analogs, C17-dihydrosphingosine or C17-phytosphingosine (PHS), and their incorporation into ceramide and more complex sphingolipids is monitored by mass spectrometry. Incorporation of C17-PHS is time and concentration dependent, is inhibited by fumonisin B1, an inhibitor of CerS, and greatly reduced in double mutant cells lacking components of the CerS, Lac1 and Lag1. The resulting C17-ceramides are further metabolized to more complex sphingolipids, inositol phosphorylceramide and mannosylinositol phosphorylceramide), indicating that the tracer can be used to decipher the regulation of later steps of the pathway. In support of this notion, we show that mutants lacking the Orm proteins, regulators of the rate-limiting step of the pathway, display increased steady-state levels of these intermediates without affecting their rate of synthesis

    The CAP protein superfamily: function in sterol export and fungal virulence

    Get PDF
    CAP superfamily proteins, also known as sperm-coating proteins, are found in all kingdoms of life and have been implicated in a variety of physiological contexts, including immune defense in plants and mammals, sperm maturation and fertilization, fungal virulence, and toxicity of insect and reptile venoms as well as prostate and brain cancer. CAP family members are mostly secreted glycoproteins that are highly stable in the extracellular fluid. All members of the superfamily share a common CAP domain of approximately 150 amino acids, which adopts a unique α-β-α sandwich fold. The conserved structure suggests that CAP proteins exert fundamentally similar functions. However, the molecular mode of action of this protein family has remained enigmatic. The budding yeast Saccharomyces cerevisiae has three CAP family members designated Pry (pathogen related in yeast), and recent evidence indicates that they act as sterol-binding and export proteins. Expression of the mammalian CAP protein CRISP2, which binds sterols in vitro, complements the sterol export defect of a yeast pry mutant, suggesting that sterol binding and export is conserved among different CAP family members. Collectively, these observations suggest that CAP family members constitute a novel class of secreted extracellular sterol-binding proteins. A ligand-binding activity of the CAP domain could explain many of the biological activities attributed to these proteins. For example, the strong induction of plant pathogenesis-related 1 protein upon exposure to pathogens may serve to inhibit pathogen proliferation by extracting sterols from the pathogen membrane. Similarly, the presence of these proteins in the venom of toxic insects and reptiles or in the secretome of pathogenic fungi might inflict damage by sequestering sterols or related small hydrophobic compounds from the host tissu

    Saccharomyces cerevisiae, a model to study sterol uptake and transport in eukaryotes

    Get PDF
    The molecular mechanisms that govern intracellular transport of sterols in eukaryotic cells are only poorly understood. Saccharomyces cerevisiae is a facultative anaerobic organism that requires supplementation with unsaturated fatty acids and sterols to grow in the absence of oxygen, as the synthesis of these lipids requires molecular oxygen. The fact that yeast grows well under anaerobic conditions indicates that lipid uptake is rapid and efficient. To identify components in this lipid uptake and transport pathway, we screened the yeast mutant collection for genes that are essential under anaerobic conditions. Out of the approx. 4800 non-essential genes represented in the mutant collection, 37 were required for growth under anaerobic conditions. Uptake assays using radiolabelled cholesterol revealed that 16 of these genes are required for cholesterol uptake/transport and esterification. Further characterization of the precise role of these genes is likely to advance our understanding of this elusive pathway in yeast and may prove to be relevant to understand sterol homoeostasis in higher eukaryotic cells

    The Cdc42 effectors Ste20, Cla4, and Skm1 down-regulate the expression of genes involved in sterol uptake by a mitogen-activated protein kinase-independent pathway

    Get PDF
    © 2009 by The American Society for Cell Biology. Under the License and Publishing Agreement, authors grant to the general public, effective two months after publication of (i.e.,. the appearance of) the edited manuscript in an online issue of MBoC, the nonexclusive right to copy, distribute, or display the manuscript subject to the terms of the Creative Commons–Noncommercial–Share Alike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0).In Saccharomyces cerevisiae, the Rho-type GTPase Cdc42 regulates polarized growth through its effectors, including the p21-activated kinases (PAKs) Ste20, Cla4, and Skm1. Previously, we demonstrated that Ste20 interacts with several proteins involved in sterol synthesis that are crucial for cell polarization. Under anaerobic conditions, sterols cannot be synthesized and need to be imported into cells. Here, we show that Ste20, Cla4, and Skm1 form a complex with Sut1, a transcriptional regulator that promotes sterol uptake. All three PAKs can translocate into the nucleus and down-regulate the expression of genes involved in sterol uptake, including the Sut1 targets AUS1 and DAN1 by a novel mechanism. Consistently, deletion of either STE20, CLA4, or SKM1 results in an increased sterol influx and PAK overexpression inhibits sterol uptake. For Ste20, we demonstrate that the down-regulation of gene expression requires nuclear localization and kinase activity of Ste20. Furthermore, the Ste20-mediated control of expression of sterol uptake genes depends on SUT1 but is independent of a mitogen-activated protein kinase signaling cascade. Together, these observations suggest that PAKs translocate into the nucleus, where they modulate expression of sterol uptake genes via Sut1, thereby controlling sterol homeostasis.Deutsche Forschungsgemeinschaft and the Swiss National Science Foundation

    The function of yeast CAP family proteins in lipid export, mating, and pathogen defense

    Get PDF
    In their natural habitat, yeast cells are constantly challenged by changing environmental conditions and a fierce competition for limiting resources. To thrive under such conditions, cells need to adapt and divide quickly, and be able to neutralize the toxic compounds secreted by their neighbors. Proteins like the pathogen‐related yeast, Pry proteins, which belong to the large CAP/SCP/TAPS superfamily, may have an important role in this function. CAP proteins are conserved from yeast to man and are characterized by a unique αβα sandwich fold. They are mostly secreted glycoproteins and have been implicated in many different physiological processes including pathogen defense, virulence, venom toxicity, and sperm maturation. Yeast members of this family bind and export sterols as well as fatty acids, and they render cells resistant to eugenol, an antimicrobial compound present in clove oil. CAP family members might thus exert their various physiological functions through binding, sequestration, and neutralization of such small hydrophobic compounds

    The surface of lipid droplets constitutes a barrier for endoplasmic reticulum-resident integral membrane proteins

    Get PDF
    Lipid droplets (LDs) are globular subcellular structures that store neutral lipids. LDs are closely associated with the endoplasmic reticulum (ER) and are limited by a phospholipid monolayer harboring a specific set of proteins. Most of these proteins associate with LDs through either an amphipathic helix or a membrane-embedded hairpin motif. Here, we address the question of whether integral membrane proteins can localize to the surface of LDs. To test this, we fused perilipin 3 (PLIN3), a mammalian LD-targeted protein, to ER-resident proteins. The resulting fusion proteins localized to the periphery of LDs in both yeast and mammalian cells. This peripheral LD localization of the fusion proteins, however, was due to a redistribution of the ER around LDs, as revealed by bimolecular fluorescence complementation between ER- and LD-localized partners. A LD-tethering function of PLIN3-containing membrane proteins was confirmed by fusing PLIN3 to the cytoplasmic domain of an outer mitochondrial membrane protein, OM14. Expression of OM14-PLIN3 induced a close apposition between LDs and mitochondria. These data indicate that the ER-LD junction constitutes a barrier for ER-resident integral membrane proteins

    Accumulation of long-chain bases in yeast promotes their conversion to a long-chain base vinyl ether

    Get PDF
    Long-chain bases (LCBs) are the precursors to ceramide and sphingolipids in eukaryotic cells. They are formed by the action of serine palmitoyl-CoA transferase (SPT), a complex of integral membrane proteins located in the endoplasmic reticulum. SPT activity is negatively regulated by Orm proteins to prevent the toxic overaccumulation of LCBs. Here we show that overaccumulation of LCBs in yeast results in their conversion to a hitherto undescribed LCB derivative, an LCB vinyl ether. The LCB vinyl ether is predominantly formed from phytosphingosine (PHS) as revealed by conversion of odd chain length tracers C17-dihydrosphingosine and C17- PHS into the corresponding LCB vinyl ether derivative. PHS vinyl ether formation depends on ongoing acetyl-CoA synthesis, and its levels are elevated when the LCB degradative pathway is blocked by deletion of the major LCB kinase, LCB4, or the LCB phosphate lyase, DPL1. PHS vinyl ether formation thus appears to constitute a shunt for the LCB phosphate- and lyase-dependent degradation of LCBs. Consistent with a role of PHS vinyl ether formation in LCB detoxification, the lipid is efficiently exported from the cells
    corecore