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Abstract Most integral membrane proteins are cotransla-
tionally inserted into the lipid bilayer. In prokaryotes,
membrane insertion of the nascent chain takes place at the
plasma membrane, whereas in eukaryotes insertion takes
place into the endoplasmatic reticulum. In both kingdoms
of life, however, the same membrane that acquaints the
newly born membrane protein also synthesizes the bilayer
lipids and thus ensures the balanced growth of the
membrane as a whole. Recent evidence indicates that
the lipid composition of the host membrane can
determine the fate of the newborn membrane protein, as
it can affect (1) the efficiency of translocation, (2) the
topology of the resulting membrane protein, (3) its
stability, (4) its assembly into oligomeric complexes, (5)
its transport and sorting along the secretory pathway, and
(6) its enzymatic activity. The lipid composition of the
membrane thus can affect the biogenesis and function of
integral membrane proteins at multiple steps along its
biogenetic pathway. While understanding this interdepen-
dence between bilayer lipids and protein biogenesis is
interesting in its own right, careful consideration of a
potential host’s membrane lipid composition may also
allow optimization of the yield and activity of membrane
proteins that are expressed in a heterologous organism.
Here, we review and discuss some examples that
illustrate the interdependence between bilayer lipids and
the biogenesis of integral membrane proteins.
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Introduction

Cellular membranes form the essential permeability barrier
that separates the interior of the cell and its organelles from
their surroundings. The exchange of nutrients and informa-
tion across these barriers is enabled by the action of integral
membrane proteins. Integral membrane proteins account for
approximately 20–30% of the proteome of prokaryotic or
eukaryotic organisms (Krogh et al. 2001). Their biogenesis
and enzymatic function is tightly linked to that of the
membrane itself and to the lipid composition of the
respective membrane. Here, we review evidence that
illustrates how lipids can affect the biogenesis and function
of integral membrane proteins. The given examples
highlight the dynamic interplay between proteins and lipids
and are important to understand membrane biogenesis per
se, that is the coordinated growth of both protein and lipid
constituents of a cellular membrane.

Most integral membrane proteins are cotranslationally
inserted into the lipid bilayer through a protein-aqueous
channel that is located either in the endoplasmatic reticulum
(ER) membrane of eukaryotic cells or the plasma mem-
brane of eubacteria and archaea. A conserved heterotrimeric
membrane complex, the Sec61 complex in eukaryotes, and
the SecY complex in bacteria form this translocon. The
translocon works in concert with bound ribosomes to
recognize emerging transmembrane helices of 15–20 amino
acid residues in length based on their hydrophobicity and
releases them through a lateral opening into the lipid bilayer
(Van den Berg et al. 2004; Hessa et al. 2005). Within the
bilayer, individual helices of a polytopic protein then
assemble into helical bundles and the conformation of the
protein further matures to acquire its free energy minimum
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(Bowie 2005). The energy for translocation is derived from
GTP hydrolysis and translocation requires an electrochem-
ical gradient across the membrane. The topology of the
newborn protein generally follows the positive-inside rule
to position lysine and arginine residues flanking the
transmembrane domain into the cytosol (Osborne et al.
2005). Once properly inserted into its lipid environment
and matured in the ER, the transmembrane protein may be
packed into vesicular carriers that are then transported and
sorted to one of the membranes of the secretory pathway.

In both prokaryotic and eukaryotic cells, the membrane
that synthesizes integral membrane proteins also harbors the
lipid biosynthetic machinery. The colocalization of these two
process is likely not incidental but a means to ensure the
balanced growth of both lipid and protein constituents of a
membrane. Striking examples of this coordination are
observed upon overexpression of integral membrane proteins,
which results in the induction of surplus membranes to
accommodate the overexpressed protein (Wright et al. 1988).
Lipids, however, are also more directly implicated in the
membrane insertion and translocation process, as many of
the components of the assembly machinery are known to be
lipid-dependent. Anionic phospholipids are required for the
proper topological orientation of the newly formed trans-
membrane protein (van Klompenburg et al. 1997; van Dalen
and de Kruijff 2004).

The lipid composition of a cellular membrane profound-
ly affects the physicochemical properties of the bilayer and,
thereby, the activity and function of integral membrane
proteins. The hallmark of the lipid composition of cellular
membranes is their complexity, as these membranes are
typically composed of lipids with many different types of
headgroups and acyl chains (Dowhan 1997; Epand 1998).
This lipid diversity is likely to be important to ensure the
dynamic functioning of membranes under changing envi-
ronmental conditions, and may also account for the differ-
ences in function that the various subcellular membranes
have to fulfill. In addition to bulk bilayer lipids, specific
lipids have been seen in many crystal structures of integral
membrane proteins and are often crucial for protein
function. For example, cytochrome C oxidase is inactivated
by the removal of cardiolipin and the bacterial potassium
channel KcsA requires anionic phospholipids for ion
transport (Lee 2004; van Dalen and de Kruijff 2004). Thus,
lipids can act as cofactors for some membrane proteins and
can stabilize their structures (Jensen and Mouritsen 2004;
Palsdottir and Hunte 2004).

Given that protein and lipid biosynthetic machineries
colocalize within the same cellular compartment and given
their mutual interdependence, one wonders of how they
coordinate their activities. This coordination is still poorly
understood on a global scale. However, selected examples
serve to illustrate the interdependence between the lipid

composition of a membrane and its capacity to synthesize
and mature integral membrane proteins. In this minireview,
we will mainly focus on two aspects of this protein–lipid
interdependence. The first illustrates the requirement for
specific membrane lipids for the correct topological
insertion of the nascent chain into the bilayer, as exempli-
fied by the lactose permease of Escherichia coli, LacY. The
second example illustrates a role of lipids with unusually
long acyl chains in the transport of the abundant proton
pumping ATPase to the cell surface of yeast.

Phosphatidylethanolamine is required for a functional
topology of the lactose permease, LacY, in E. coli

One of the most striking and, also, best-characterized
interplays between membrane phospholipid composition
and the structure and function of an integral membrane
protein is that of the lactose permease LacY from E. coli
(Dowhan et al. 2004). LacY is a particularly well-studied
representative of the major facilitator superfamily (MFS)
transporters and a member of the oligosaccharide/proton
symporter subfamily of the MFS transporters. Like many
MFS members, LacY couples the free energy released from
the downhill translocation of protons in response to an
electrochemical proton gradient to drive the energetically
uphill stoichiometric accumulation of galactosides against a
concentration gradient. The molecule is composed of N-
and C-terminal domains, each with six transmembrane
helices, symmetrically positioned within the permease.
Common to many sugar permeases, including LacY, is a
very hydrophilic transmembrane domain 7 that is not
predicted by membrane topology algorithms but has been
verified biochemically (Abramson et al. 2003).

Phosphatidylethanolamine (PE) is the most abundant
phospholipid of the inner membrane of E. coli, where it
constitutes 75–80% of total phospholipids. It is a non-
bilayer-forming lipid because it has a small polar headgroup
relative to the diameter occupied by the two acyl chains.
This small headgroup gives the lipid the shape of a cone
when rotated along its long axes. Such cone-shaped lipids
form inverted hexagonal phases characterized by high local
curvature rather than bilayers. When incorporated into a
bilayer together with other lipids, PE evokes lateral
pressure, which is thought to stabilize membrane proteins
in their native conformation (Epand 1998).

Earlier studies in the mid-eighties in which LacY was
reconstituted in proteoliposomes of various lipid composi-
tions revealed that PE is required for LacY activity in vitro
(Chen and Wilson 1984; Seto-Young et al. 1985). Subse-
quent in vivo studies revealed that LacY assembled in E. coli
mutant lacking PE cannot accumulate substrate against a
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concentration gradient, but it can still facilitate substrate
transport/diffusion (Bogdanov and Dowhan 1995). Loss of
full transporter function of LacY in cells lacking PE
correlates with a structural alteration in the periplasmic
domain P7 of LacY, as indicated by a loss of recognition by
a conformation-sensitive monoclonal antibody (Fig. 1). PE is
not required for membrane insertion of LacY, but it is
required to facilitate the proper folding and membrane
topology of LacY late in the maturation process. A
systematic comparison of the transmembrane topology of
LacY in cells containing or lacking PE revealed a topological
inversion of the N-terminal half of LacY when the protein is
assembled in the absence of PE. Remarkably, however,
active transport by LacY and reversion of the inverted
topology can be restored by addition of PE even after LacY
has been synthesized and inserted into the membrane. These
results indicate that LacY can adopt two different topologies,
depending on whether the membrane contains PE or not, and
that the two topologies are interchangeable postinsertionally
in response to phospholipid composition. The results thus
implicate phospholipids as specific participants in determin-
ing membrane protein organization and have been taken to
suggest that the regulation of membrane protein function can
occur by topology “switching” in response to changes in the
phospholipid environment (Bogdanov et al. 2002; Wang et
al. 2002).

The in vivo and in vitro studies on LacY topology are
consistent with a role of PE to act as a molecular chaperone
in the folding of this polytopic membrane protein. The
proposed chaperone function of PE in establishing the
correct topological orientation of transmembrane domain 7
in LacY appears to be independent of the ability of this lipid
to form inverted hexagonal phases as PE with two saturated
acyl chains could correct the folding defect of LacY in
vitro, whereas PE species that do not support bilayer
formation failed to correct the folding defect (Bogdanov et
al. 1999). Thus, the ability of PE as an overall neutral, but
zwitterionic, lipid to form hydrogen bonds with amino acid
residues appears to be critical for its chaperone activity.
Remarkably, PE can be replaced by a foreign lipid,

monoglucosyldiacylglycerol, to restore the uphill transport
and wild-type topology of LacY. Thus, the two most
abundant lipids in Gram-negative and Gram-positive
bacteria have an interchangeable role in defining the
transmembrane domain orientation of LacY and possibly
other integral membrane proteins (Xie et al. 2006). LacY is
not the only integral membrane protein whose topology is
sensitive to PE levels, as similar observations where
reported for the high-affinity phenylalanine permease and
the gamma-aminobutyric acid permease, both belonging to
the amino acid/polyamine/organocation superfamily of
secondary transporters (Zhang et al. 2003, 2005).

The transmembrane topology of most eukaryotic poly-
topic membrane proteins is established cotranslationally at
the ER membrane and is maintained during subsequent
steps of folding and transport. The biogenesis of these
proteins involves a series of coordinated translocation and
membrane integration events that is directed by topogenic
determinants within the nascent chains and that ultimately
leads to a uniform topology for any given polypeptide. In
recent years, however, it has become evident that certain
cellular polytopic proteins exhibit variations in biogenesis
such that two or more distinct topological orientations are
generated (Levy 1996; Hegde and Lingappa 1999). Re-
markably, a recent global analysis of the topology of the
inner-membrane proteome of E. coli revealed five candidate
proteins that exhibited two alternative topologies (Rapp et
al. 2006). The X-ray structure of one of these, EmrE, a
member of the small multidrug resistance family of efflux
transporters, provides conclusive evidence for its dual
topology (Pornillos and Chang 2006). It will be interesting
to learn whether the relative topology of these membrane
proteins is modulated by the lipid composition of the bilayer.

There are a number of other examples of integral
membrane proteins that are expressed in alternate topolog-
ical forms with the diversity apparently generated at the
time of translocation at the ER membrane. These include
the multidrug resistance P-glycoprotein (Zhang et al. 1993),
the transporter ductin (Dunlop et al. 1995), the aquaporin-1
water channel protein (Lu et al. 2000), and the hepatitis B

Fig. 1 Topology of the E. coli
lactose transporter LacY in cells
containing or lacking PE. The
N-terminal seven transmem-
brane domains of LacY switch
their membrane orientation in
the absence of PE (adapted from
Dowhan et al. 2004)
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virus large envelope protein (Lambert and Prange 2001).
On the other hand, OEP7, an envelope protein of
chloroplasts, orients with native topology in liposomes that
reflect the in vivo lipid composition, but with an opposite
topology in liposomes of nonnative composition (Schleiff
et al. 2001). Given the fact that proteins can assume
alternative topologies in wild-type cells, and that lipid
mutants display alternative topologies of some integral
membrane proteins, it seems conceivable that the lipid
composition of the bilayer or transport of the protein to a
different subcellular membrane may serve to modulate
protein topology and, thereby, protein function.

Phosphatidylethanolamine is required for the transport
of the arginine permease, Can1, to the cell surface
of yeast

In yeast, PE constitutes approximately 20% of the total
phospholipids and a minimal level of PE is required for
viability because depletion of PE below 4% affects the growth
of the organism on nonfermentable carbon sources or at
elevated temperatures (Birner et al. 2001; Storey et al. 2001).
Depletion of PE in yeast affects the uptake of nutrients such
as arginine, mediated by Can1; uracil, mediated by Fur4;
proline, mediated by Put4; general amino acid uptake,
mediated by Gap1; and uptake of maltose, mediated by
Mal6. Uptake of glucose by the hexose transporter, Hxt1, on
the other hand, is not affected (Robl et al. 2001; Opekarova
et al. 2002). Interestingly, however, in PE-depleted cells,
Can1 accumulates in the Golgi apparatus instead of being
transported to the plasma membrane. Arrest of Can1 in the
Golgi appears not to be due to a folding defect of the protein,
as Can1 function can be restored in vitro by reconstitution of
the protein into liposomes containing PE (Opekarova et al.
2005). In wild-type cells, Can1 is associated with detergent-
resistant membranes, or lipid “rafts,” and is localized in
discrete domains at the cell surface that are distinct from
those occupied by the abundant proton pumping H+-ATPase
(Malinska et al. 2003). Interestingly, depletion of PE impairs
raft association of Can1, but not that of the ATPase,
indicating that the lipid environment of Can1 is distinct
from that of the ATPase and that the two proteins react
differently on changes in that environment (Opekarova et al.
2005).

Very-long-chain fatty acid-containing lipids
are required for stable surface transport of the proton
pumping H+-ATPase in yeast

The proton pumping H+-ATPase, Pma1, is an abundant and
long-lived polytopic membrane protein of the yeast plasma

membrane. The proton pumping activity of Pma1 is
essential for regulating intracellular pH and for uptake of
nutrients by plasma membrane symporters. The protein
belongs to the family of cation-transporting ATPases, which
includes the Na+/K+-ATPase and Ca2+-ATPase of the
mammalian plasma membrane (Kühlbrand 2004). Pma1
accounts for more than 25% of all the proteins of the
plasma membrane and thus constitutes a major cargo of the
secretory pathway. Pma1 serves as an excellent model to
study the biogenesis of the plasma membrane, that is the
coordinated synthesis, assembly, and transport of both the
protein and lipid constituents of this membrane.

Pma1 is biosynthetically inserted into the membrane of
the ER, from where it is transported by vesicular carriers to
its final destination (Holcomb et al. 1988; Chang and
Slayman 1991). Already in the ER, Pma1 forms a large 1.8-
MDa homo-oligomeric complex that resists extraction by
detergents (Lee et al. 2002). This protein–lipid complex is
then packaged into coat protein complex II transport
vesicles (Roberg et al. 1999). From the Golgi complex,
Pma1 is transported to the cell surface by a branch of the
secretory pathway that does not intersect with endosomes
(Gurunathan et al. 2002; Harsay and Schekman 2002). At
the cell surface, Pma1 becomes stabilized by a poorly
characterized mechanism and occupies detergent-resistant
domains that are distinct from those occupied by the
arginine/H+ symporter Can1p (Bagnat et al. 2000; Malinska
et al. 2003). From the plasma membrane, Pma1 is finally
recycled and turned-over by endocytic delivery to the vacuole.

Stable surface transport of the H+-ATPase depends
on ongoing sphingolipid synthesis

Similar to the synthesis of integral membrane proteins, the
synthesis of sphingolipids begins in the ER, where serine
palmitoyltransferase catalyzes the condensation of serine
with palmitoyl-CoA to form a long-chain base. This long-
chain base then condenses with a C26 very-long-chain fatty
acid to form ceramide; a reaction that is catalyzed by the
ER-localized ceramide synthase. Ceramide is transported
from the ER to the Golgi apparatus by vesicular and
nonvesicular routes before it is converted to more complex
sphingolipids (Levine et al. 2000; Funato and Riezman
2001). Mature sphingolipids are then transported to the
plasma membrane, where they are highly enriched
(Schneiter 1999; Dickson et al. 2006).

Work by the Schekman and Chang laboratories has
established that the biogenesis and stable surface transport
of Pma1 depends on ongoing sphingolipid synthesis.
Using either a temperature-sensitive allele of serine
palmitoyltransferase, lcb1-100, or myriocin to block serine
palmitoyltransferase activity, these groups showed that
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ongoing long-chain base synthesis is required for oligo-
merization of Pma1 in the ER membrane and for its
association with lipid rafts (Lee et al. 2002). In the
absence of long-chain base synthesis, monomeric, non-
raft-associated Pma1 is still exported from the ER, but it is
mistargeted to the vacuole where it is degraded (Bagnat et
al. 2001; Lee et al. 2002).

We observed that Pma1 was rapidly degraded in cells
that fail to elongate the ceramide-bound C22 fatty acid to
the mature C26 very-long-chain fatty acid, as is the case in
cells lacking ELO3, a component of the ER-localized acyl
chain elongase (Oh et al. 1997; Eisenkolb et al. 2002).
Interestingly, this rapid turnover of Pma1 in the elo3Δ
mutant is correlated with a lack of the newly synthesized
protein to acquire detergent resistance (Eisenkolb et al.
2002). Turnover of Pma1 in elo3Δ is dependent on
ongoing endocytosis, indicating that the protein reaches
the plasma membrane first, but that it fails to become
stabilized there and instead is endocytosed and delivered to
the vacuole for degradation (Eisenkolb et al. 2002) (Fig. 2).

More precise analysis of the requirement for sphingo-
lipids in surface transport and stabilization of Pma1
subsequently revealed that all mutations that affect C26
synthesis result in the rapid turnover of newly synthesized
Pma1 (Gaigg et al. 2005). Increased turnover of Pma1 in
these mutants is always accompanied by a failure of the
newly synthesized protein to acquire detergent resistance
(Gaigg et al. 2005). Remarkably, other mutations that affect
the structure of the sphingolipid headgroup or its hydrox-
ylation pattern did not affect raft association or turnover of
Pma1 (Gaigg et al. 2005). These results thus suggested that
the synthesis of C26-containing lipids, rather than ceramide
or sphingolipids per se, is important for raft association of
newly synthesized Pma1 and for its stable delivery to the
cell surface. To test this hypothesis, we took advantage of a
strain that is viable without synthesizing long-chain base or
ceramide and sphingolipids (Dickson et al. 1990). This so-
called suppressor strain bears a dominant mutation in an
acyltransferase, Slc1, that allows the enzyme to synthesize
unusual lipids containing a C26 fatty acid attached to a
glycerophospholipid, phosphatidylinositol (PI). These C26-
containing PIs thus replace the essential function of
sphingolipids and structurally and functionally mimic
sphingolipids (Lester et al. 1993). Remarkably, analysis of
Pma1 stability in this suppressor strain revealed that newly
synthesized ATPase acquires detergent resistance and that it
is stably delivered to the cell surface (Gaigg et al. 2006).
Shortening the C26 fatty acid on these suppressor lipids by
means of an elo3Δ mutation, however, neutralized the
suppressor activity of these lipids and resulted in the rapid
turnover of the newly synthesized Pma1 (Gaigg et al.
2006). These results thus strongly indicate that lipids
containing C26 fatty acids, either bound to ceramide or

glycerophospholipids, are important for the stable biogen-
esis of Pma1 (Toulmay and Schneiter 2006).

Possible functions of C26-containing lipids

C26-containing sphingolipids are the hallmark of the
yeast plasma membrane. Synthesis of these lipids,
however, begins in the ER where both the fatty acid
elongase and the ceramide synthase are located. Thus,
like the integral membrane proteins that are destined to
the cell surface, C26-containing ceramide/sphingolipids
must travel from the ER to the plasma membrane. The
fact that these lipids affect detergent solubility of newly
synthesized Pma1 already upon ER exit would indicate
that lipids and protein already assemble at their site of
synthesis and are then cotransported to the surface (Lee
et al. 2002). A failure to properly assemble this protein
lipid complex results in a diversion of surface-destined
vesicle to the vacuole, a failure in stabilization of the
complex upon arrival at the plasma membrane, or both
(Bagnat et al. 2001; Gong and Chang 2001; Wang and
Chang 2002).

Our observations would indicate that C26-containing
lipids are essential for the formation of functional lipid–
protein complexes. The precise role that C26 fulfills in
this assembly, however, remains to be defined. It has
been suggested that the length of the transmembrane
domain of proteins along the secretory pathway may
increase to match bilayers of increasing “thickness”
(Levine et al. 2000). In such a model, the abundance of
C26-containing lipids may determine the thickness of
membranes along the secretory pathway and thereby affect
the sorting of integral membrane proteins. Biophysical
studies with pure lipid bilayers, on the other hand, indicate
that lipids with highly asymmetric acyl chains can
interdigitate into the hydrophobic core of the opposite half
of the bilayer and thus do not necessarily increase the
thickness of the bilayer (Hui et al. 1984). In addition,
membrane proteins themselves have recently been shown to
modulate bilayer thickness by more than 10% (Mitra et al.
2004), an observation that is consistent with the proposition
that the thickness of the lipid component of a biological
membrane must not naturally match that of the embedded
proteins (Mouritsen and Bloom 1993). Based on these
considerations, we believe it is premature to correlate acyl
chain length with bilayer thickness in biological mem-
branes. Alternative functions of the C26 acyl chains could
be to interdigitate into the opposite leaflet, thereby (1)
coupling the two halves of the bilayer to lower the energy
required to deform this potentially stiff, cholesterol-rich
membrane and (2) increase acyl chain packing density to
prevent permeability by small molecules. One of the
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essential functions these lipids may fulfill could thus be to
stabilize highly curved membrane domains that are tran-
siently formed during vesicle budding and fusion along the
secretory pathway (McMahon and Gallop 2005).

Ergosterol is required for surface transport
of the tryptophan permease, Tat2, in yeast

A final example to illustrate the interdependence between
lipids and membrane protein biogenesis is that of the yeast
tryptophan permease Tat2. In yeast, uptake of tryptophan
requires the plasma membrane localization of the transport-
er Tat2. Interestingly, plasma membrane localization of Tat2
itself is regulated by the concentration of tryptophan that is
available to the cells, as increased levels of tryptophan
result in the targeting of Tat2 to the vacuole for degrada-
tion, whereas low tryptophan levels result in the plasma
membrane localization of Tat2 (Umebayashi and Nakano
2003). Yeast cells synthesize ergosterol as their main

membrane sterol. Mutant cells that are deficient in a late
step along the ergosterol biosynthetic pathway due to a
defect in the S-adenosylmethionine Δ24 methyltransferase,
Erg6, were known to have a reduced capacity to take up
tryptophan (Gaber et al. 1989). In an erg6 mutant, however,
Tat2 is missorted to the vacuole even if tryptophan levels
are low, thus explaining their reduced capacity to take up
tryptophan (Umebayashi and Nakano 2003). Remarkably,
sorting of Tat2 to the plasma membrane depends on its
association with detergent-insoluble membrane domains,
suggesting that sterols affect sorting of Tat2 through their
organization of lipid rafts. In addition, erg6 mutants
promote the sorting of Tat2 into the multivesicular body
pathway in late endosomes, which results in the exclusive
delivery of Tat2 into the lumen of the vacuole rather than
the limiting membrane of the vacuole, as is observed in
wild-type cells (Umebayashi and Nakano 2003). Sterol
composition is thus crucial for protein sorting late in the
secretory pathway. Sterol-dependent missorting of Tat2 is
mediated by polyubiquitination, which is known to act as a

Fig. 2 The fate of the proton pumping plasma membrane ATPase,
Pma1, in fatty acid elongase mutant Saccharomyces cerevisiae cells. a
Overview of the biogenesis of Pma1 in wild-type cells. Newly
synthesized Pma1 rapidly forms oligomeric structures and acquires
detergent resistance in the ER and is then transported by the secretory
pathway (sec) to the plasma membrane. At the plasma membrane, the
Pma1 complex forms stable domains and is turned over only slowly by
endocytosis (end) and vacuolar degradation (Vac). b Newly synthe-
sized Pma1 is rapidly degraded in elongase mutant cells, elo3Δ, as
revealed by pulse-chase analysis. c Newly synthesized Pma1 fails to

become raft-associated in elongase mutant cells. Pulse-chase analysis
followed by detergent extraction reveals that Pma1 remains Triton-
extractable in elo3Δ mutant cells. T total extract, P detergent-resistant
pellet fraction, S detergent soluble fraction. The time indicates time
after synthesis of Pma1. d Pma1 is degraded by routing to the vacuole
in elongase mutants. Green fluorescent protein-tagged Pma1 localizes
to the plasma membrane in wild-type cells, but is targeted to the
vacuolar lumen in elo3Δ mutants (arrowheads) (adapted from
Toulmay and Schneiter 2006). Bar, 5 μm

Appl Microbiol Biotechnol (2007) 73:1224–1232 1229



vacuolar targeting signal, and the inhibition of polyubiqui-
tination restores sorting of Tat2 to the plasma membrane in
an erg6 mutant (Umebayashi and Nakano 2003). Missort-
ing of integral membrane proteins in sterol mutants is not
limited to Tat2 but has also been observed for Fus1, a
plasma membrane protein required for yeast mating, and
an artificial fusion protein, suggesting that membrane
sterols play an important role in protein sorting along the
exocytic pathway (Bagnat and Simons 2002; Proszynski et
al. 2005).

General considerations on the role of lipids
in modulating the biogenesis of integral membrane
proteins

The above cases illustrate how lipids can affect the fate of
an integral membrane protein in vivo. Given that the
membrane lipid composition varies greatly between differ-
ent organisms, nonfunctional lipid–protein interactions may
explain some of the difficulties encountered in expressing
functional membrane proteins in heterologous organisms.
For example, expression of the mammalian P-glycoprotein
in E. coli results in nonfunctional protein with a topological
inversion of the C-terminal half, including the nucleotide-
binding domain (Linton and Higgins 2002). Similarly, a
citrate carrier of Klebsiella pneumoniae displays 11
transmembrane domains when inserted into dog pancreas
ER membranes but only nine transmembrane domains
when expressed in E. coli (van Geest et al. 1999). Thus,
the lipid composition of the membranes of the host may be
one additional parameter to consider when choosing an
organism for the heterologous expression of integral
membrane proteins (Opekarova and Tanner 2003). Alter-
natively, modulation of the host’s lipid repertoire either by
genetic means or by supplementation of soluble lipid
precursors may be instrumental to recover a functional
membrane protein (Dowhan 1997).
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