11 research outputs found

    Identifying wildlife reservoirs of neglected taeniid tapeworms : non-invasive diagnosis of endemic Taenia serialis infection in a wild primate population

    Get PDF
    Despite the global distribution and public health consequences of Taenia tapeworms, the life cycles of taeniids infecting wildlife hosts remain largely undescribed. The larval stage of Taenia serialis commonly parasitizes rodents and lagomorphs, but has been reported in a wide range of hosts that includes geladas (Theropithecus gelada), primates endemic to Ethiopia. Geladas exhibit protuberant larval cysts indicative of advanced T. serialis infection that are associated with high mortality. However, non-protuberant larvae can develop in deep tissue or the abdominal cavity, leading to underestimates of prevalence based solely on observable cysts. We adapted a non-invasive monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) to detect circulating Taenia spp. antigen in dried gelada urine. Analysis revealed that this assay was highly accurate in detecting Taenia antigen, with 98.4% specificity, 98.5% sensitivity, and an area under the curve of 0.99. We used this assay to investigate the prevalence of T. serialis infection in a wild gelada population, finding that infection is substantially more widespread than the occurrence of visible T. serialis cysts (16.4% tested positive at least once, while only 6% of the same population exhibited cysts). We examined whether age or sex predicted T. serialis infection as indicated by external cysts and antigen presence. Contrary to the female-bias observed in many Taenia-host systems, we found no significant sex bias in either cyst presence or antigen presence. Age, on the other hand, predicted cyst presence (older individuals were more likely to show cysts) but not antigen presence. We interpret this finding to indicate that T. serialis may infect individuals early in life but only result in visible disease later in life. This is the first application of an antigen ELISA to the study of larval Taenia infection in wildlife, opening the doors to the identification and description of infection dynamics in reservoir populations

    Counts of log sample index values (IVs) (the optical density of each sample indexed to the positive and negative controls on each plate) + a constant.

    No full text
    <p>Blue bars indicate samples from individuals without cysts, while grey bars indicate samples from individuals with cysts. The dotted line indicates the optimal threshold cutoff for positive samples indicating antigen presence calculated with the ROC analysis.</p

    Genomic signatures of high-altitude adaptation and chromosomal polymorphism in geladas.

    Get PDF
    Primates have adapted to numerous environments and lifestyles but very few species are native to high elevations. Here we investigated high-altitude adaptations in the gelada (Theropithecus gelada), a monkey endemic to the Ethiopian Plateau. We examined genome-wide variation in conjunction with measurements of haematological and morphological traits. Our new gelada reference genome is highly intact and assembled at chromosome-length levels. Unexpectedly, we identified a chromosomal polymorphism in geladas that could potentially contribute to reproductive barriers between populations. Compared with baboons at low altitude, we found that high-altitude geladas exhibit significantly expanded chest circumferences, potentially allowing for greater lung surface area for increased oxygen diffusion. We identified gelada-specific amino acid substitutions in the alpha-chain subunit of adult haemoglobin but found that gelada haemoglobin does not exhibit markedly altered oxygenation properties compared with lowland primates. We also found that geladas at high altitude do not exhibit elevated blood haemoglobin concentrations, in contrast to the normal acclimatization response to hypoxia in lowland primates. The absence of altitude-related polycythaemia suggests that geladas are able to sustain adequate tissue-oxygen delivery despite environmental hypoxia. Finally, we identified numerous genes and genomic regions exhibiting accelerated rates of evolution, as well as gene families exhibiting expansions in the gelada lineage, potentially reflecting altitude-related selection. Our findings lend insight into putative mechanisms of high-altitude adaptation while suggesting promising avenues for functional hypoxia research. [Abstract copyright: © 2022. The Author(s), under exclusive licence to Springer Nature Limited.
    corecore