41,215 research outputs found

    Evolution of Mass Functions of Coeval Stars through Wind Mass Loss and Binary Interactions

    Get PDF
    Accurate determinations of stellar mass functions and ages of stellar populations are crucial to much of astrophysics. We analyse the evolution of stellar mass functions of coeval main sequence stars including all relevant aspects of single- and binary-star evolution. We show that the slope of the upper part of the mass function in a stellar cluster can be quite different to the slope of the initial mass function. Wind mass loss from massive stars leads to an accumulation of stars which is visible as a peak at the high mass end of mass functions, thereby flattening the mass function slope. Mass accretion and mergers in close binary systems create a tail of rejuvenated binary products. These blue straggler stars extend the single star mass function by up to a factor of two in mass and can appear up to ten times younger than their parent stellar cluster. Cluster ages derived from their most massive stars that are close to the turn-off may thus be significantly biased. To overcome such difficulties, we propose the use of the binary tail of stellar mass functions as an unambiguous clock to derive the cluster age because the location of the onset of the binary tail identifies the cluster turn-off mass. It is indicated by a pronounced jump in the mass function of old stellar populations and by the wind mass loss peak in young stellar populations. We further characterise the binary induced blue straggler population in star clusters in terms of their frequency, binary fraction and apparent age.Comment: 21 pages, 22 figures, accepted for publication in Ap

    Pressure effects on the superconducting properties of YBa_2Cu_4O_8

    Full text link
    Measurements of the magnetization under high hydrostatic pressure (up to 10.2 kbar) in YBa_2Cu_4O_8 were carried out. From the scaling analysis of the magnetization data the pressure induced shifts of the transition temperature T_c, the volume V and the anisotropy \gamma have been obtained. It was shown that the pressure induced relative shift of T_c mirrors essentially that of the anisotropy. This observation uncovers a novel generic property of anisotropic type II superconductors, that inexistent in the isotropic case.Comment: 4 pages, 3 figure

    The spectroscopic Hertzsprung-Russell diagram of Galactic massive stars

    Full text link
    The distribution of stars in the Hertzsprung-Russell diagram narrates their evolutionary history and directly assesses their properties. Placing stars in this diagram however requires the knowledge of their distances and interstellar extinctions, which are often poorly known for Galactic stars. The spectroscopic Hertzsprung-Russell diagram (sHRD) tells similar evolutionary tales, but is independent of distance and extinction measurements. Based on spectroscopically derived effective temperatures and gravities of almost 600 stars, we derive for the first time the observational distribution of Galactic massive stars in the sHRD. While biases and statistical limitations in the data prevent detailed quantitative conclusions at this time, we see several clear qualitative trends. By comparing the observational sHRD with different state-of-the-art stellar evolutionary predictions, we conclude that convective core overshooting may be mass-dependent and, at high mass (≥15 M⊙\geq 15\,M_\odot), stronger than previously thought. Furthermore, we find evidence for an empirical upper limit in the sHRD for stars with TeffT_{\rm{eff}} between 10000 and 32000 K and, a strikingly large number of objects below this line. This over-density may be due to inflation expanding envelopes in massive main-sequence stars near the Eddington limit.Comment: 5 pages, 2 figures, 1 table; accepted for publication in A&A Letter

    Finite-size and pressure effects in YBa_2Cu_4O_8 probed by magnetic field penetration depth measurements

    Full text link
    We explore the combined pressure and finite-size effects on the in-plane penetration depth \lambda_{ab} in YBa_2Cu_4O_8. Even though this cuprate is stoichiometric the finite-size scaling analysis of \lambda_{ab}^{-2}(T) uncovers the granular nature and reveals domains with nanoscale size L_{c} along the c-axis. L_{c} ranges from 33.2 Angstrom to 28.9 Angstrom at pressures from 0.5 to 11.5 kbar. These observations raise serious doubts on the existence of a phase coherent macroscopic superconducting state in cuprate superconductors.Comment: 7 pages, 6 figure

    A Note on Asymptotic Freedom at High Temperatures

    Get PDF
    This short note considers, within the external field approach outlined in hep-ph/0202026, the role of the lowest lying gluon Landau mode in QCD in the high temperature limit. Its influence on a temperature- and field-dependent running coupling constant is examined. The thermal imaginary part of the mode is temperature-independent in our approach and exactly cancels the well-known zero temperature imaginary part, thus rendering the Savvidy vacuum stable. Combining the real part of the mode with the contributions from the higher lying Landau modes and the vacuum contribution, a field-independent coupling alpha_s(T) is obtained. It can be interpreted as the ordinary zero temperature running coupling constant with average thermal momenta \approx 2pi T for gluons and \approx pi T for quarks.Comment: 4 pages; minor changes, version to appear in Phys. Rev.

    The occurrence of classical Cepheids in binary systems

    Full text link
    Classical Cepheids, like binary stars, are laboratories for stellar evolution and Cepheids in binary systems are especially powerful ones. About one-third of Galactic Cepheids are known to have companions and Cepheids in eclipsing binary systems have recently been discovered in the Large Magellanic Cloud. However, there are no known Galactic binary Cepheids with orbital periods less than one year. We compute population synthesis models of binary Cepheids to compare to the observed period and eccentricity distributions of Galactic Cepheids as well as to the number of observed eclipsing binary Cepheids in the LMC. We find that our population synthesis models are consistent with observed binary properties of Cepheids. Furthermore, we show that binary interaction on the red giant branch prevents some red giant stars from becoming classical Cepheids. Such interactions suggest that the binary fraction of Cepheids should be significantly less than that of their main-sequence progenitors, and that almost all binary Cepheids have orbital periods longer than one year. If the Galactic Cepheid spectroscopic binary fraction is about 35%, then the spectroscopic binary fraction of their intermediate mass main sequence progenitors is about 40-45%.Comment: 7 pages, 3 figures, resubmitted to A&

    Numerical Tests of Rotational Mixing in Massive Stars with the new Population Synthesis Code BONNFIRES

    Full text link
    We use our new population synthesis code BONNFIRES to test how surface abundances predicted by rotating stellar models depend on the numerical treatment of rotational mixing, such as spatial resolution, temporal resolution and computation of mean molecular weight gradients. We find that even with identical numerical prescriptions for calculating the rotational mixing coefficients in the diffusion equation, different timesteps lead to a deviation of the coefficients and hence surface abundances. We find the surface abundances vary by 10-100% between the model sequences with short timestep of 0.001Myr to model sequences with longer timesteps. Model sequences with stronger surface nitrogen enrichment also have longer main-sequence lifetimes because more hydrogen is mixed to the burning cores. The deviations in main-sequence lifetimes can be as large as 20%. Mathematically speaking, no numerical scheme can give a perfect solution unless infinitesimally small timesteps are used. However, we find that the surface abundances eventually converge within 10% between modelling sequences with sufficiently small timesteps below 0.1Myr. The efficiency of rotational mixing depends on the implemented numerical scheme and critically on the computation of the mean molecular weight gradient. A smoothing function for the mean molecular weight gradient results in stronger rotational mixing. If the discretization scheme or the computational recipe for calculating the mean molecular weight gradient is altered, re-calibration of mixing parameters may be required to fit observations. If we are to properly understand the fundamental physics of rotation in stars, it is crucial that we minimize the uncertainty introduced into stellar evolution models when numerically approximating rotational mixing processes.Comment: 8 pages, 6 figures, accepted by A&

    Dense packing crystal structures of physical tetrahedra

    Full text link
    We present a method for discovering dense packings of general convex hard particles and apply it to study the dense packing behavior of a one-parameter family of particles with tetrahedral symmetry representing a deformation of the ideal mathematical tetrahedron into a less ideal, physical, tetrahedron and all the way to the sphere. Thus, we also connect the two well studied problems of sphere packing and tetrahedron packing on a single axis. Our numerical results uncover a rich optimal-packing behavior, compared to that of other continuous families of particles previously studied. We present four structures as candidates for the optimal packing at different values of the parameter, providing an atlas of crystal structures which might be observed in systems of nano-particles with tetrahedral symmetry
    • …
    corecore