48,186 research outputs found

    Finite-size and pressure effects in YBa_2Cu_4O_8 probed by magnetic field penetration depth measurements

    Full text link
    We explore the combined pressure and finite-size effects on the in-plane penetration depth \lambda_{ab} in YBa_2Cu_4O_8. Even though this cuprate is stoichiometric the finite-size scaling analysis of \lambda_{ab}^{-2}(T) uncovers the granular nature and reveals domains with nanoscale size L_{c} along the c-axis. L_{c} ranges from 33.2 Angstrom to 28.9 Angstrom at pressures from 0.5 to 11.5 kbar. These observations raise serious doubts on the existence of a phase coherent macroscopic superconducting state in cuprate superconductors.Comment: 7 pages, 6 figure

    The modular structure of an ontology: Atomic decomposition

    Get PDF
    Extracting a subset of a given ontology that captures all the ontology’s knowledge about a specified set of terms is a well-understood task. This task can be based, for instance, on locality-based modules. However, a single module does not allow us to understand neither topicality, connectedness, structure, or superfluous parts of an ontology, nor agreement between actual and intended modeling. The strong logical properties of locality-based modules suggest that the family of all such modules of an ontology can support comprehension of the ontology as a whole. However, extracting that family is not feasible, since the number of localitybased modules of an ontology can be exponential w.r.t. its size. In this paper we report on a new approach that enables us to efficiently extract a polynomial representation of the family of all locality-based modules of an ontology. We also describe the fundamental algorithm to pursue this task, and report on experiments carried out and results obtained.

    Evolution of Biological Complexity

    Get PDF
    In order to make a case for or against a trend in the evolution of complexity in biological evolution, complexity needs to be both rigorously defined and measurable. A recent information-theoretic (but intuitively evident) definition identifies genomic complexity with the amount of information a sequence stores about its environment. We investigate the evolution of genomic complexity in populations of digital organisms and monitor in detail the evolutionary transitions that increase complexity. We show that because natural selection forces genomes to behave as a natural ``Maxwell Demon'', within a fixed environment genomic complexity is forced to increase.Comment: LaTeX 19 pages, incl. 4 fig

    Torque magnetometry on single-crystal high temperature superconductors near the critical temperature: a scaling approach

    Full text link
    Angular-dependent magnetic torque measurements performed near the critical temperature on single crystals of HgBa_{2}CuO_{4+y}, La_{2-x}Sr{x}CuO_{4}, and YBa_{2}Cu_{3}O_{6.93} are scaled, following the 3D XY model, in order to determine the scaling function dG^{\pm}(z)/dz which describes the universal critical properties near T_{c}. A systematic shift of the scaling function with increasing effective mass anisotropy \gamma = (m_{ab}*/m_{c}*)^{1/2} is observed, which may be understood in terms of a 3D-2D crossover. Further evidence for a 3D-2D crossover is found from temperature-dependent torque measurements carried out in different magnetic fields at different field orientations \delta, which show a quasi 2D "crossing region'' (M*,T*). The occurrence of this "crossing phenomenon'' is explained in a phenomenological way from the weak z dependence of the scaling function around a value z = z*. The "crossing'' temperature T* is found to be angular-dependent. Torque measurements above T_{c} reveal that fluctuations are strongly enhanced in the underdoped regime where the anisotropy is large, whereas they are less important in the overdoped regime.Comment: 9 pages, 10 figures, submitted to PR

    Implications evinced by the phase diagram, anisotropy, magnetic penetration depths, isotope effects and conductivities of cuprate superconductors

    Full text link
    Anisotropy, thermal and quantum fluctuations and their dependence on dopant concentration appear to be present in all cuprate superconductors, interwoven with the microscopic mechanisms responsible for superconductivity. Here we review anisotropy, in-plane and c-axis penetration depths, isotope effect and conductivity measurements to reassess the universal behavior of cuprates as revealed by the doping dependence of these phenomena and of the transition temperature.Comment: 14 pages, 13 figure

    Specific protein-protein binding in many-component mixtures of proteins

    Get PDF
    Proteins must bind to specific other proteins in vivo in order to function. The proteins must bind only to one or a few other proteins of the of order a thousand proteins typically present in vivo. Using a simple model of a protein, specific binding in many component mixtures is studied. It is found to be a demanding function in the sense that it demands that the binding sites of the proteins be encoded by long sequences of bits, and the requirement for specific binding then strongly constrains these sequences. This is quantified by the capacity of proteins of a given size (sequence length), which is the maximum number of specific-binding interactions possible in a mixture. This calculation of the maximum number possible is in the same spirit as the work of Shannon and others on the maximum rate of communication through noisy channels.Comment: 13 pages, 3 figures (changes for v2 mainly notational - to be more in line with notation in information theory literature

    Study of leakage currents in pCVD diamonds as function of the magnetic field

    Full text link
    pCVD diamond sensors are regularly used as beam loss monitors in accelerators by measuring the ionization of the lost particles. In the past these beam loss monitors showed sudden increases in the dark leakage current without beam losses and these erratic leakage currents were found to decrease, if magnetic fields were present. Here we report on a systematic study of leakage currents inside a magnetic field. The decrease of erratic currents in a magnetic field was confirmed. On the contrary, diamonds without erratic currents showed an increase of the leakage current in a magnetic field perpendicular to the electric field for fields up to 0.6T, for higher fields it decreases. A preliminary model is introduced to explain the observations.Comment: 6 pages, 16 figures, poster at Hasselt Diamond Workshop, Mar 2009, accepted version for publicatio

    Generalized Robba rings

    Get PDF
    We prove that any projective coadmissible module over the locally analytic distribution algebra of a compact pp-adic Lie group is finitely generated. In particular, the category of coadmissible modules does not have enough projectives. In the Appendix a "generalized Robba ring" for uniform pro-pp groups is constructed which naturally contains the locally analytic distribution algebra as a subring. The construction uses the theory of generalized microlocalization of quasi-abelian normed algebras that is also developed there. We equip this generalized Robba ring with a self-dual locally convex topology extending the topology on the distribution algebra. This is used to show some results on coadmissible modules.Comment: with an appendix by Peter Schneider; revised; new titl
    • …
    corecore