66,496 research outputs found
Relative energetics of acetyl-histidine protomers with and without Zn<sup>2+</sup> and a benchmark of energy methods
We studied acetylhistidine (AcH), bare or microsolvated with a zinc cation by simulations in isolation. First, a global search for minima of the potential energy surface combining both, empirical and first-principles methods, is performed individually for either one of five possible protonation states. Comparing the most stable structures between tautomeric forms of negatively charged AcH shows a clear preference for conformers with the neutral imidazole ring protonated at the N-epsilon-2 atom. When adding a zinc cation to the system, the situation is reversed and N-delta-1-protonated structures are energetically more favorable. Obtained minima structures then served as basis for a benchmark study to examine the goodness of commonly applied levels of theory, i.e. force fields, semi-empirical methods, density-functional approximations (DFA), and wavefunction-based methods with respect to high-level coupled-cluster calculations, i.e. the DLPNO-CCSD(T) method. All tested force fields and semi-empirical methods show a poor performance in reproducing the energy hierarchies of conformers, in particular of systems involving the zinc cation. Meta-GGA, hybrid, double hybrid DFAs, and the MP2 method are able to describe the energetics of the reference method within chemical accuracy, i.e. with a mean absolute error of less than 1kcal/mol. Best performance is found for the double hybrid DFA B3LYP+XYG3 with a mean absolute error of 0.7 kcal/mol and a maximum error of 1.8 kcal/mol. While MP2 performs similarly as B3LYP+XYG3, computational costs, i.e. timings, are increased by a factor of 4 in comparison due to the large basis sets required for accurate results
Numerical Implementation of Harmonic Polylogarithms to Weight w = 8
We present the FORTRAN-code HPOLY.f for the numerical calculation of harmonic
polylogarithms up to w = 8 at an absolute accuracy of
or better. Using algebraic and argument relations the numerical representation
can be limited to the range . We provide replacement
files to map all harmonic polylogarithms to a basis and the usual range of
arguments to the above interval analytically. We also
briefly comment on a numerical implementation of real valued cyclotomic
harmonic polylogarithms.Comment: 19 pages LATEX, 3 Figures, ancillary dat
The Chandra X-ray view of the power sources in Cepheus A
The central part of the massive star-forming region Cepheus A contains
several radio sources which indicate multiple outflow phenomena, yet the
driving sources of the individual outflows have not been identified. We present
a high-resolution Chandra observation of this region that shows the presence of
bright X-ray sources, consistent with active pre-main sequence stars, while the
strong absorption hampers the detection of less luminous objects. A new source
has been discovered located on the line connecting H_2 emission regions at the
eastern and western parts of Cepheus A. This source could be the driving source
of HH 168. We present a scenario relating the observed X-ray and radio
emission.Comment: 7 pages, 6 figures, accepted for publication in A&
The evolution of the X-ray emission of HH 2 - Investigating heating and cooling processes
Young stellar objects often drive powerful bipolar outflows which evolve on
time scales of a few years. An increasing number of these outflows has been
detected in X-rays implying the existence of million degree plasma almost
co-spatial with the lower temperature gas observed in the optical and near-IR.
The details of the heating and cooling processes of the X-ray emitting part of
these so-called Herbig-Haro objects are still ambiguous, e.g., whether the
cooling is dominated by expansion, radiation or thermal conduction.
We present a second epoch Chandra observation of the first X-ray detected
Herbig-Haro object (HH 2) and derive the proper-motion of the X-ray emitting
plasma and its cooling history. We argue that the most likely explanation for
the constancy of the X-ray luminosity, the alignment with the optical emission
and the proper-motion is that the cooling is dominated by radiative losses
leading to cooling times exceeding a decade. We explain that a strong shock
caused by fast material ramming into slower gas in front of it about ten years
ago can explain the X-ray emission while being compatible with the available
multi-wavelength data of HH 2.Comment: 5 pages with 4 figures; accepted for publication by Astronomy and
Astrophysic
Study of leakage currents in pCVD diamonds as function of the magnetic field
pCVD diamond sensors are regularly used as beam loss monitors in accelerators
by measuring the ionization of the lost particles. In the past these beam loss
monitors showed sudden increases in the dark leakage current without beam
losses and these erratic leakage currents were found to decrease, if magnetic
fields were present. Here we report on a systematic study of leakage currents
inside a magnetic field. The decrease of erratic currents in a magnetic field
was confirmed. On the contrary, diamonds without erratic currents showed an
increase of the leakage current in a magnetic field perpendicular to the
electric field for fields up to 0.6T, for higher fields it decreases. A
preliminary model is introduced to explain the observations.Comment: 6 pages, 16 figures, poster at Hasselt Diamond Workshop, Mar 2009,
accepted version for publicatio
The evolution of the jet from Herbig Ae star HD 163296 from 1999 to 2011
Young A and B stars, the so-called Herbig Ae/Be stars (HAeBe), are surrounded
by an active accretion disk and drive outflows. We study the jet HH 409, which
is launched from the HAeBe star HD 163296, using new and archival observations
from Chandra and HST/STIS. In X-rays we can show that the central source is not
significantly extended. The approaching jet, but not the counter-jet, is
detected in Ly alpha. In addition, there is red-shifted Ly alpha emission
extended in the same direction as the jet, that is also absent in the
counter-jet. We can rule out an accretion or disk-wind origin for this feature.
In the optical we find the knots B and B2 in the counter-jet. Knot B has been
observed previously, so we can derive its proper motion of 0.37+-0.01
arcsec/yr. Its electron density is 3000/cm^3, thus the cooling time scale is a
few months only, so the knot needs to be reheated continuously. The shock speed
derived from models of H alpha and forbidden emission lines (FELs) decreased
from 50 km/s in 1999 to 30 km/s in 2011 because the shock front loses energy as
it travels along the jet. Knot B2 is observed at a similar position in 2011 as
knot B was in 1999, but shows a lower ionization fraction and higher mass loss
rate, proving variations in the jet launching conditions.Comment: 14 pages, 8 figures, accepted by A&
Energy-limited escape revised
Gas planets in close proximity to their host stars experience
photoevaporative mass loss. The energy-limited escape concept is generally used
to derive estimates for the planetary mass-loss rates. Our photoionization
hydrodynamics simulations of the thermospheres of hot gas planets show that the
energy-limited escape concept is valid only for planets with a gravitational
potential lower than ergg because in these planets the radiative energy input is
efficiently used to drive the planetary wind. Massive and compact planets with
ergg
exhibit more tightly bound atmospheres in which the complete radiative energy
input is re-emitted through hydrogen Ly and free-free emission. These
planets therefore host hydrodynamically stable thermospheres. Between these two
extremes the strength of the planetary winds rapidly declines as a result of a
decreasing heating efficiency. Small planets undergo enhanced evaporation
because they host expanded atmospheres that expose a larger surface to the
stellar irradiation. We present scaling laws for the heating efficiency and the
expansion radius that depend on the gravitational potential and irradiation
level of the planet. The resulting revised energy-limited escape concept can be
used to derive estimates for the mass-loss rates of super-Earth-sized planets
as well as massive hot Jupiters with hydrogen-dominated atmospheres.Comment: 5 pages, 5 figures, accepted for publication in A&
Advanced dosimetry systems for the space transport and space station
Advanced dosimetry system concepts are described that will provide automated and instantaneous measurement of dose and particle spectra. Systems are proposed for measuring dose rate from cosmic radiation background to greater than 3600 rads/hr. Charged particle spectrometers, both internal and external to the spacecraft, are described for determining mixed field energy spectra and particle fluxes for both real time onboard and ground-based computer evaluation of the radiation hazard. Automated passive dosimetry systems consisting of thermoluminescent dosimeters and activation techniques are proposed for recording the dose levels for twelve or more crew members. This system will allow automatic onboard readout and data storage of the accumulated dose and can be transmitted to ground after readout or data records recovered with each crew rotation
- …