657 research outputs found
Quasi-Equatorial Gravitational Lensing by Spinning Black Holes in the Strong Field Limit
Spherically symmetric black holes produce, by strong field lensing, two
infinite series of relativistic images, formed by light rays winding around the
black hole at distances comparable to the gravitational radius. In this paper,
we address the relevance of the black hole spin for the strong field lensing
phenomenology, focusing on trajectories close to the equatorial plane for
simplicity. In this approximation, we derive a two-dimensional lens equation
and formulae for the position and the magnification of the relativistic images
in the strong field limit. The most outstanding effect is the generation of a
non trivial caustic structure. Caustics drift away from the optical axis and
acquire finite extension. For a high enough black hole spin, depending on the
source extension, we can practically observe only one image rather than two
infinite series of relativistic images. In this regime, additional non
equatorial images may play an important role in the phenomenology.Comment: 13 pages, 9 figures. Improved version with detailed physical
discussio
Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential
We address a two-dimensional nonlinear elliptic problem with a
finite-amplitude periodic potential. For a class of separable symmetric
potentials, we study the bifurcation of the first band gap in the spectrum of
the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to
describe this bifurcation. The coupled-mode equations are derived by the
rigorous analysis based on the Fourier--Bloch decomposition and the Implicit
Function Theorem in the space of bounded continuous functions vanishing at
infinity. Persistence of reversible localized solutions, called gap solitons,
beyond the coupled-mode equations is proved under a non-degeneracy assumption
on the kernel of the linearization operator. Various branches of reversible
localized solutions are classified numerically in the framework of the
coupled-mode equations and convergence of the approximation error is verified.
Error estimates on the time-dependent solutions of the Gross--Pitaevskii
equation and the coupled-mode equations are obtained for a finite-time
interval.Comment: 32 pages, 16 figure
Probing the Environment with Galaxy Dynamics
I present various projects to study the halo dynamics of elliptical galaxies.
This allows one to study the outer mass and orbital distributions of
ellipticals in different environments, and the inner distributions of groups
and clusters themselves.Comment: 5 pages, 2 figs, to appear in Proc. ESO Workshop, Groups of Galaxies
in the Nearby Universe (5-9 Dec 2005), eds. I. Saviane, V. Ivanov & J.
Borissova (Springer-Verlag
Weak force detection with superposed coherent states
We investigate the utility of non classical states of simple harmonic
oscillators, particularly a superposition of coherent states, for sensitive
force detection. We find that like squeezed states a superposition of coherent
states allows displacement measurements at the Heisenberg limit. Entangling
many superpositions of coherent states offers a significant advantage over a
single mode superposition states with the same mean photon number.Comment: 6 pages, no figures: New section added on entangled resources.
Changes to discussions and conclusio
Thermopower of a 2D electron gas in suspended AlGaAs/GaAs heterostructures
We present thermopower measurements on a high electron mobility
two-dimensional electron gas (2DEG) in a thin suspended membrane.We show that
the small dimension of the membrane substantially reduces the thermal
conductivity compared to bulk material so that it is possible to establish a
strong thermal gradient along the 2DEG even at a distance of few micrometers.
We find that the zero-field thermopower is significantly affected by the micro
patterning. In contrast to 2DEGs incorporated in a bulk material, the diffusion
contribution to the thermopower stays dominant up to a temperature of 7 K until
the phonon-drag becomes strong and governs the run of the thermopower. We also
find that the coupling between electrons and phonons in the phonon-drag regime
is due to screened deformation potentials, in contrast to piezoelectric
coupling found with bulk phonons.Comment: 7 page
Mathematics of Gravitational Lensing: Multiple Imaging and Magnification
The mathematical theory of gravitational lensing has revealed many generic
and global properties. Beginning with multiple imaging, we review
Morse-theoretic image counting formulas and lower bound results, and
complex-algebraic upper bounds in the case of single and multiple lens planes.
We discuss recent advances in the mathematics of stochastic lensing, discussing
a general formula for the global expected number of minimum lensed images as
well as asymptotic formulas for the probability densities of the microlensing
random time delay functions, random lensing maps, and random shear, and an
asymptotic expression for the global expected number of micro-minima. Multiple
imaging in optical geometry and a spacetime setting are treated. We review
global magnification relation results for model-dependent scenarios and cover
recent developments on universal local magnification relations for higher order
caustics.Comment: 25 pages, 4 figures. Invited review submitted for special issue of
General Relativity and Gravitatio
Quasars and their host galaxies
This review attempts to describe developments in the fields of quasar and
quasar host galaxies in the past five. In this time period, the Sloan and 2dF
quasar surveys have added several tens of thousands of quasars, with Sloan
quasars being found to z>6. Obscured, or partially obscured quasars have begun
to be found in significant numbers. Black hole mass estimates for quasars, and
our confidence in them, have improved significantly, allowing a start on
relating quasar properties such as radio jet power to fundamental parameters of
the quasar such as black hole mass and accretion rate. Quasar host galaxy
studies have allowed us to find and characterize the host galaxies of quasars
to z>2. Despite these developments, many questions remain unresolved, in
particular the origin of the close relationship between black hole mass and
galaxy bulge mass/velocity dispersion seen in local galaxies.Comment: Review article, to appear in Astrophysics Update
Probing the dark matter issue in f(R)-gravity via gravitational lensing
For a general class of analytic f(R)-gravity theories, we discuss the weak
field limit in view of gravitational lensing. Though an additional Yukawa term
in the gravitational potential modifies dynamics with respect to the standard
Newtonian limit of General Relativity, the motion of massless particles results
unaffected thanks to suitable cancellations in the post-Newtonian limit. Thus,
all the lensing observables are equal to the ones known from General
Relativity. Since f(R)-gravity is claimed, among other things, to be a possible
solution to overcome for the need of dark matter in virialized systems, we
discuss the impact of our results on the dynamical and gravitational lensing
analyses. In this framework, dynamics could, in principle, be able to reproduce
the astrophysical observations without recurring to dark matter, but in the
case of gravitational lensing we find that dark matter is an unavoidable
ingredient. Another important implication is that gravitational lensing, in the
post-Newtonian limit, is not able to constrain these extended theories, since
their predictions do not differ from General Relativity.Comment: 7 pages, accepted for publication in EPJ
- …