Spherically symmetric black holes produce, by strong field lensing, two
infinite series of relativistic images, formed by light rays winding around the
black hole at distances comparable to the gravitational radius. In this paper,
we address the relevance of the black hole spin for the strong field lensing
phenomenology, focusing on trajectories close to the equatorial plane for
simplicity. In this approximation, we derive a two-dimensional lens equation
and formulae for the position and the magnification of the relativistic images
in the strong field limit. The most outstanding effect is the generation of a
non trivial caustic structure. Caustics drift away from the optical axis and
acquire finite extension. For a high enough black hole spin, depending on the
source extension, we can practically observe only one image rather than two
infinite series of relativistic images. In this regime, additional non
equatorial images may play an important role in the phenomenology.Comment: 13 pages, 9 figures. Improved version with detailed physical
discussio