104 research outputs found

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference

    Modelling Cell Polarization Driven by Synthetic Spatially Graded Rac Activation

    Get PDF
    The small GTPase Rac is known to be an important regulator of cell polarization, cytoskeletal reorganization, and motility of mammalian cells. In recent microfluidic experiments, HeLa cells endowed with appropriate constructs were subjected to gradients of the small molecule rapamycin leading to synthetic membrane recruitment of a Rac activator and direct graded activation of membrane-associated Rac. Rac activation could thus be triggered independent of upstream signaling mechanisms otherwise responsible for transducing activating gradient signals. The response of the cells to such stimulation depended on exceeding a threshold of activated Rac. Here we develop a minimal reaction-diffusion model for the GTPase network alone and for GTPase-phosphoinositide crosstalk that is consistent with experimental observations for the polarization of the cells. The modeling suggests that mutual inhibition is a more likely mode of cell polarization than positive feedback of Rac onto its own activation. We use a new analytical tool, Local Perturbation Analysis, to approximate the partial differential equations by ordinary differential equations for local and global variables. This method helps to analyze the parameter space and behaviour of the proposed models. The models and experiments suggest that (1) spatially uniform stimulation serves to sensitize a cell to applied gradients. (2) Feedback between phosphoinositides and Rho GTPases sensitizes a cell. (3) Cell lengthening/flattening accompanying polarization can increase the sensitivity of a cell and stabilize an otherwise unstable polarization

    A Comparison of Mathematical Models for Polarization of Single Eukaryotic Cells in Response to Guided Cues

    Get PDF
    Polarization, a primary step in the response of an individual eukaryotic cell to a spatial stimulus, has attracted numerous theoretical treatments complementing experimental studies in a variety of cell types. While the phenomenon itself is universal, details differ across cell types, and across classes of models that have been proposed. Most models address how symmetry breaking leads to polarization, some in abstract settings, others based on specific biochemistry. Here, we compare polarization in response to a stimulus (e.g., a chemoattractant) in cells typically used in experiments (yeast, amoebae, leukocytes, keratocytes, fibroblasts, and neurons), and, in parallel, responses of several prototypical models to typical stimulation protocols. We find that the diversity of cell behaviors is reflected by a diversity of models, and that some, but not all models, can account for amplification of stimulus, maintenance of polarity, adaptation, sensitivity to new signals, and robustness

    Antagonistic Bacterial Interactions Help Shape Host-Symbiont Dynamics within the Fungus-Growing Ant-Microbe Mutualism

    Get PDF
    Conflict within mutually beneficial associations is predicted to destabilize relationships, and theoretical and empirical work exploring this has provided significant insight into the dynamics of cooperative interactions. Within mutualistic associations, the expression and regulation of conflict is likely more complex than in intraspecific cooperative relationship, because of the potential presence of: i) multiple genotypes of microbial species associated with individual hosts, ii) multiple species of symbiotic lineages forming cooperative partner pairings, and iii) additional symbiont lineages. Here we explore complexity of conflict expression within the ancient and coevolved mutualistic association between attine ants, their fungal cultivar, and actinomycetous bacteria (Pseudonocardia). Specifically, we examine conflict between the ants and their Pseudonocardia symbionts maintained to derive antibiotics against parasitic microfungi (Escovopsis) infecting the ants' fungus garden. Symbiont assays pairing isolates of Pseudonocardia spp. associated with fungus-growing ants spanning the phylogenetic diversity of the mutualism revealed that antagonism between strains is common. In contrast, antagonism was substantially less common between more closely related bacteria associated with Acromyrmex leaf-cutting ants. In both experiments, the observed variation in antagonism across pairings was primarily due to the inhibitory capabilities and susceptibility of individual strains, but also the phylogenetic relationships between the ant host of the symbionts, as well as the pair-wise genetic distances between strains. The presence of antagonism throughout the phylogenetic diversity of Pseudonocardia symbionts indicates that these reactions likely have shaped the symbiosis from its origin. Antagonism is expected to prevent novel strains from invading colonies, enforcing single-strain rearing within individual ant colonies. While this may align ant-actinomycete interests in the bipartite association, the presence of single strains of Pseudonocardia within colonies may not be in the best interest of the ants, because increasing the diversity of bacteria, and thereby antibiotic diversity, would help the ant-fungus mutualism deal with the specialized parasites

    Lifetime history of indoor tanning in young people: a retrospective assessment of initiation, persistence, and correlates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite educational and public health campaigns to convey the risks of indoor tanning, many individuals around the world continue to engage in this behavior. Few descriptive studies of indoor tanning have collected information pertaining to the lifetime history of indoor tanning, thereby limiting our ability to understand indoor tanning patterns and potentially target interventions for individuals who not only initiate, but continue to persistently engage in indoor tanning.</p> <p>Methods</p> <p>In-person interviews elicited detailed retrospective information on lifetime history of indoor tanning among white individuals (n = 401) under age 40 seen by a dermatologist for a minor benign skin condition. These individuals were controls in a case-control study of early-onset basal cell carcinoma. Outcomes of interest included ever indoor tanning in both males and females, as well as persistent indoor tanning in females - defined as females over age 31 who tanned indoors at least once in the last three or all four of four specified age periods (ages 11-15, 16-20, 21-30 and 31 or older). Multivariate logistic regression was used to identify sociodemographic and lifestyle correlates of ever and persistent indoor tanning in females.</p> <p>Results</p> <p>Approximately three-quarters (73.3%) of females and 38.3% of males ever tanned indoors, with a median age of initiation of 17.0 and 21.5, respectively. Among indoor tanners, 39.3% of females and 21.7% of males reported being burned while indoor tanning. Female ever indoor tanners were younger, had darker color eyes, and sunbathed more frequently than females who never tanned indoors. Using unique lifetime exposure data, 24.7% of female indoor tanners 31 and older persistently tanned indoors starting as teenagers. Female persistent indoor tanners drank significantly more alcohol, were less educated, had skin that tanned with prolonged sun exposure, and sunbathed outdoors more frequently than non-persistent tanners.</p> <p>Conclusions</p> <p>Indoor tanning was strikingly common in this population, especially among females. Persistent indoor tanners had other high-risk behaviors (alcohol, sunbathing), suggesting that multi-faceted behavioral interventions aimed at health promotion/disease prevention may be needed in this population.</p

    Msb2 Shedding Protects Candida albicans against Antimicrobial Peptides

    Get PDF
    Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of >400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance

    word~river literary review (2011)

    Full text link
    wordriver is a literary journal dedicated to the poetry, short fiction and creative nonfiction of adjuncts and part-time instructors teaching in our universities, colleges, and community colleges. Our premier issue was published in Spring 2009. We are always looking for work that demonstrates the creativity and craft of adjunct/part-time instructors in English and other disciplines. We reserve first publication rights and onetime anthology publication rights for all work published. We define adjunct instructors as anyone teaching part-time or full-time under a semester or yearly contract, nationwide and in any discipline. Graduate students teaching under part-time contracts during the summer or who have used up their teaching assistant time and are teaching with adjunct contracts for the remainder of their graduate program also are eligible.https://digitalscholarship.unlv.edu/word_river/1001/thumbnail.jp

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure
    corecore