675 research outputs found

    Generation and characterization of function-blocking anti-ectodysplasin A (EDA) monoclonal antibodies that induce ectodermal dysplasia.

    Get PDF
    Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated

    Ground state non-universality in the random field Ising model

    Full text link
    Two attractive and often used ideas, namely universality and the concept of a zero temperature fixed point, are violated in the infinite-range random-field Ising model. In the ground state we show that the exponents can depend continuously on the disorder and so are non-universal. However, we also show that at finite temperature the thermal order parameter exponent one half is restored so that temperature is a relevant variable. The broader implications of these results are discussed.Comment: 4 pages 2 figures, corrected prefactors caused by a missing factor of two in Eq. 2., added a paragraph in conclusions for clarit

    Sialic acids on B cells are crucial for their survival and provide protection against apoptosis.

    Get PDF
    Sialic acids (Sias) on the B cell membrane are involved in cell migration, in the control of the complement system and, as sialic acid-binding immunoglobulin-like lectin (Siglec) ligands, in the regulation of cellular signaling. We studied the role of sialoglycans on B cells in a mouse model with B cell-specific deletion of cytidine monophosphate sialic acid synthase (CMAS), the enzyme essential for the synthesis of sialoglycans. Surprisingly, these mice showed a severe B cell deficiency in secondary lymphoid organs. Additional depletion of the complement factor C3 rescued the phenotype only marginally, demonstrating a complement-independent mechanism. The B cell survival receptor BAFF receptor was not up-regulated, and levels of activated caspase 3 and processed caspase 8 were high in B cells of Cmas-deficient mice, indicating ongoing apoptosis. Overexpressed Bcl-2 could not rescue this phenotype, pointing to extrinsic apoptosis. These results show that sialoglycans on the B cell surface are crucial for B cell survival by counteracting several death-inducing pathways

    What does the rho-meson do? In-medium mass shift scenarios versus hadronic model calculations

    Full text link
    The NA60 experiment has studied low-mass muon pair production in In-In collisions at 158AGeV158 {\rm AGeV} with unprecedented precision. With these results there is hope that the in-medium modifications of the vector meson spectral function can be constrained more thoroughly than before. We investigate in particular what can be learned about collisional broadening by a hot and dense medium and what constrains the experimental results put on in-medium mass shift scenarios. The data show a clear indication of considerable in-medium broadening effects but disfavor mass shift scenarios where the ρ\rho-meson mass scales with the square root of the chiral condensate. Scaling scenarios which predict at finite density a dropping of the ρ\rho-meson mass that is stronger than that of the quark condensate are clearly ruled out since they are also accompanied by a sharpening of the spectral function.Comment: Proceeding contribution, Talk given by J. Ruppert at Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions (Hot Quarks 2006), Villasimius, Sardinia, Italy, 15-20 May 2006. To appear in EPJ

    Deep seawater cooling and desalination: Combining seawater air conditioning and desalination

    Get PDF
    In tropical climates, the energy consumed by heating, ventilation and air conditioning can exceed 50% of the total energy consumption of a building. The demand for cooling is rising steadily, driven by global warming and rapidly increasing living standards in developing economies. In addition, there is a rise in water demand due to population increase, life quality, and global warming. Coastal areas with narrow continental shelves are the perfect site for implementing Seawater Air Conditioning (SWAC), a renewable and low CO2 emission cooling process. This article proposes the combination of SWAC and reverse osmosis (RO) desalination with the objective of providing desalinated cold water for integrated water supply and cooling services. This combination was named Deep Seawater Cooling and Desalination (DSCD). It was found that DSCD can supply 49 MWt of cooling and 1 m3/s of water simultaneously with an electricity consumption of 12 MWe. DSCD has several benefits compared to SWAC and RO individually, such as in how the cooling service and water supply are delivered together, reducing distribution costs. A case study was performed in Malé, Maldives. It shows that the technology has substantial potential to contribute to the sustainable development of tropical islands

    Spatial correlations in vote statistics: a diffusive field model for decision-making

    Full text link
    We study the statistics of turnout rates and results of the French elections since 1992. We find that the distribution of turnout rates across towns is surprisingly stable over time. The spatial correlation of the turnout rates, or of the fraction of winning votes, is found to decay logarithmically with the distance between towns. Based on these empirical observations and on the analogy with a two-dimensional random diffusion equation, we propose that individual decisions can be rationalised in terms of an underlying "cultural" field, that locally biases the decision of the population of a given region, on top of an idiosyncratic, town-dependent field, with short range correlations. Using symmetry considerations and a set of plausible assumptions, we suggest that this cultural field obeys a random diffusion equation.Comment: 18 pages, 5 figures; added sociophysics references

    Classification of a supersolid: Trial wavefunctions, Symmetry breakings and Excitation spectra

    Full text link
    A state of matter is characterized by its symmetry breaking and elementary excitations. A supersolid is a state which breaks both translational symmetry and internal U(1) U(1) symmetry. Here, we review some past and recent works in phenomenological Ginsburg-Landau theories, ground state trial wavefunctions and microscopic numerical calculations. We also write down a new effective supersolid Hamiltonian on a lattice. The eigenstates of the Hamiltonian contains both the ground state wavefunction and all the excited states (supersolidon) wavefunctions. We contrast various kinds of supersolids in both continuous systems and on lattices, both condensed matter and cold atom systems. We provide additional new insights in studying their order parameters, symmetry breaking patterns, the excitation spectra and detection methods.Comment: REVTEX4, 19 pages, 3 figure

    Comparison of some Reduced Representation Approximations

    Full text link
    In the field of numerical approximation, specialists considering highly complex problems have recently proposed various ways to simplify their underlying problems. In this field, depending on the problem they were tackling and the community that are at work, different approaches have been developed with some success and have even gained some maturity, the applications can now be applied to information analysis or for numerical simulation of PDE's. At this point, a crossed analysis and effort for understanding the similarities and the differences between these approaches that found their starting points in different backgrounds is of interest. It is the purpose of this paper to contribute to this effort by comparing some constructive reduced representations of complex functions. We present here in full details the Adaptive Cross Approximation (ACA) and the Empirical Interpolation Method (EIM) together with other approaches that enter in the same category
    corecore