776 research outputs found

    Nanofiber-based optical trapping of cold neutral atoms

    Full text link
    We present experimental techniques and results related to the optimization and characterization of our nanofiber-based atom trap [Vetsch et al., Phys. Rev. Lett. 104, 203603 (2010)]. The atoms are confined in an optical lattice which is created using a two-color evanescent field surrounding the optical nanofiber. For this purpose, the polarization state of the trapping light fields has to be properly adjusted. We demonstrate that this can be accomplished by analyzing the light scattered by the nanofiber. Furthermore, we show that loading the nanofiber trap from a magneto-optical trap leads to sub-Doppler temperatures of the trapped atomic ensemble and yields a sub-Poissonian distribution of the number of trapped atoms per trapping site

    The KB paradigm and its application to interactive configuration

    Full text link
    The knowledge base paradigm aims to express domain knowledge in a rich formal language, and to use this domain knowledge as a knowledge base to solve various problems and tasks that arise in the domain by applying multiple forms of inference. As such, the paradigm applies a strict separation of concerns between information and problem solving. In this paper, we analyze the principles and feasibility of the knowledge base paradigm in the context of an important class of applications: interactive configuration problems. In interactive configuration problems, a configuration of interrelated objects under constraints is searched, where the system assists the user in reaching an intended configuration. It is widely recognized in industry that good software solutions for these problems are very difficult to develop. We investigate such problems from the perspective of the KB paradigm. We show that multiple functionalities in this domain can be achieved by applying different forms of logical inferences on a formal specification of the configuration domain. We report on a proof of concept of this approach in a real-life application with a banking company. To appear in Theory and Practice of Logic Programming (TPLP).Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Scattering and absorption of ultracold atoms by nanotubes

    Full text link
    We investigate theoretically how cold atoms, including Bose-Einstein condensates, are scattered from, or absorbed by nanotubes with a view to analysing recent experiments. In particular we consider the role of potential strength, quantum reflection, atomic interactions and tube vibrations on atom loss rates. Lifshitz theory calculations deliver a significantly stronger scattering potential than that found in experiment and we discuss possible reasons for this. We find that the scattering potential for dielectric tubes can be calculated to a good approximation using a modified pairwise summation approach, which is efficient and easily extendable to arbitrary geometries. Quantum reflection of atoms from a nanotube may become a significant factor at low temperatures, especially for non-metallic tubes. Interatomic interactions are shown to increase the rate at which atoms are lost to the nanotube and lead to non-trivial dynamics. Thermal nanotube vibrations do not significantly increase loss rates or reduce condensate fractions, but lower frequency oscillations can dramatically heat the cloud.Comment: 7 pages, 4 figure

    State-Insensitive Trapping of Alkaline-Earth Atoms in a Nanofiber-Based Optical Dipole Trap

    Full text link
    Neutral atoms trapped in the evanescent optical potentials of nanotapered optical fibers are a promising platform for developing quantum technologies and exploring fundamental science, such as quantum networks and quantum electrodynamics. Building on the successful advancements with trapped alkali atoms, here we demonstrate a state-insensitive optical dipole trap for strontium-88, an alkaline-earth atom, using the evanescent fields of a nanotapered optical fiber. Leveraging the low laser-cooling temperatures of  ⁣ ⁣1 μ\sim\!\!1~\muK readily achievable with strontium, we demonstrate trapping in record low trap depths corresponding to  ⁣ ⁣3 μ\sim\!\!3~\muK. Further, employing a double magic wavelength trapping scheme, we realize state-insensitive trapping on the kilohertz-wide 5s^{2}\;^{1}\!S_{0}-5s5p\;^{3}\!P_{1,|m|=1} cooling transition, which we verify by performing near-surface high-resolution spectroscopy of the atomic transition. This allows us to experimentally find and verify the state insensitivity of the trap nearby a theoretically predicted magic wavelength of 435.827(25) nm. Given the non-magnetic ground state and low collisional scattering length of strontium-88, this work also lays the foundation for developing versatile and robust matter-wave atomtronic circuits over nanophotonic waveguides.Comment: 14 pages, 15 figure

    Performance of propensity score calibration - A simulation study

    Get PDF
    Confounding can be a major source of bias in nonexperimental research. The authors recently introduced propensity score calibration (PSC), which combines propensity scores and regression calibration to address confounding by variables unobserved in the main study by using variables observed in a validation study. Here, the authors assess the performance of PSC using simulations in settings with and without violation of the key assumption of PSC: that the error-prone propensity score estimated in the main study is a surrogate for the gold-standard propensity score (i.e., it contains no additional information on the outcome). The assumption can be assessed if data on the outcome are available in the validation study. If data are simulated allowing for surrogacy to be violated, results depend largely on the extent of violation. If surrogacy holds, PSC leads to bias reduction between 32% and 106% (>100% representing overcorrection). If surrogacy is violated, PSC can lead to an increase in bias. Surrogacy is violated when the direction of confounding of the exposure-disease association caused by the unobserved variable(s) differs from that of the confounding due to observed variables. When surrogacy holds, PSC is a useful approach to adjust for unmeasured confounding using validation data

    A Nanofiber-Based Optical Conveyor Belt for Cold Atoms

    Full text link
    We demonstrate optical transport of cold cesium atoms over millimeter-scale distances along an optical nanofiber. The atoms are trapped in a one-dimensional optical lattice formed by a two-color evanescent field surrounding the nanofiber, far red- and blue-detuned with respect to the atomic transition. The blue-detuned field is a propagating nanofiber-guided mode while the red-detuned field is a standing-wave mode which leads to the periodic axial confinement of the atoms. Here, this standing wave is used for transporting the atoms along the nanofiber by mutually detuning the two counter-propagating fields which form the standing wave. The performance and limitations of the nanofiber-based transport are evaluated and possible applications are discussed

    Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: Nonsteroidal antiinflammatory drugs and short-term mortality in the elderly

    Get PDF
    Little is known about optimal application and behavior of exposure propensity scores (EPS) in small studies. In a cohort of 103,133 elderly Medicaid beneficiaries in New Jersey, the effect of nonsteroidal antiinflammatory drug use on 1-year all-cause mortality was assessed (1995-1997) based on the assumption that there is no protective effect and that the preponderance of any observed effect would be confounded. To study the comparative behavior of EPS, disease risk scores, and "conventional" disease models, the authors randomly resampled 1,000 subcohorts of 10,000, 1,000, and 500 persons. The number of variables was limited in disease models, but not EPS and disease risk scores. Estimated EPS were used to adjust for confounding by matching, inverse probability of treatment weighting, stratification, and modeling. The crude rate ratio of death was 0.68 for users of nonsteroidal antiinflammatory drugs. "Conventional" adjustment resulted in a rate ratio of 0.80 (95% confidence interval: 0.77, 0.84). The rate ratio closest to 1 (0.85) was achieved by inverse probability of treatment weighting (95% confidence interval: 0.82, 0.88). With decreasing study size, estimates remained further from the null value, which was most pronounced for inverse probability of treatment weighting (n = 500: rate ratio = 0.72, 95% confidence interval: 0.26, 1.68). In this setting, analytic strategies using EPS or disease risk scores were not generally superior to "conventional" models. Various ways to use EPS and disease risk scores behaved differently with smaller study size
    corecore