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Abstract
Confounding can be a major source of bias in non-experimental research. The authors recently
introduced propensity score calibration (PSC), which combines propensity scores (PS) and regression
calibration to address confounding by variables unobserved in the main study by using variables
observed in a validation study. Here, the authors assess the performance of PSC using simulations
in settings with and without violation of the key assumption of PSC: that the error-prone PS estimated
in the main study is a surrogate for the gold-standard PS (i.e. contains no additional information on
the outcome). The assumption can be assessed if data on the outcome are available in the validation
study. If data are simulated allowing for surrogacy to be violated, results largely depend on the extent
of violation. If surrogacy holds, PSC leads to bias reduction between 74 and 106 percent (>100
percent representing an overcorrection). If surrogacy is violated, PSC can lead to an increase in bias.
Surrogacy is violated when the direction of confounding of the exposure-disease association caused
by the unobserved variable(s) differs from that of the confounding due to observed variables. When
surrogacy holds, PSC is a useful approach to adjust for unmeasured confounding using validation
data.
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Confounding can be a major source of bias in non-experimental research. Studies often lack
measures of important potential confounders, such as smoking and body mass index in
pharmacoepidemiologic studies that use claims data, or laboratory or blood pressure
measurements in questionnaire-based studies. Various methods have been proposed to assess
the sensitivity of observed associations to the possible effect of unobserved confounders
(1-12), but only one of these can address the joint confounding due to multiple unobserved
confounders (12). We recently introduced propensity score calibration (PSC, 13), combining
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propensity scores (14) and regression calibration developed to correct for measurement error
(15,16). Our goal was to address the joint confounding by variables unobserved in the main
cohort study by using variables observed in a cross-sectional validation study. We previously
demonstrated that this method worked well in one specific pharmacoepidemiologic example,
assessing the effect of nonsteroidal anti-inflammatory drugs on short-term all-cause mortality
(13), without requiring outcome information in the validation study.

As we have noted (13), PSC, like regression calibration, is dependent on the assumption that
the error-prone variable is a surrogate for the gold-standard variable, i.e. that the error-prone
propensity score (PS) is independent of disease given the gold-standard PS and exposure
(17,18). Thus, under surrogacy, the error-prone PS serves as a proxy for the gold-standard PS
with measurement error that is independent of the outcome. Surrogacy is plausible in many
settings, especially when the gold-standard and error-prone variables are observed at baseline
in a cohort study in which the disease outcome occurs later in time (17). For example, it is
plausible that a single day's blood pressure contributes no information on incidence of
cardiovascular disease beyond that given by true long-term blood pressure (17). By contrast,
self-reported values of total cholesterol, which might be considered as surrogates for
(unavailable) serum cholesterol values, have been observed to be stronger predictors of
cardiovascular outcomes compared with measured serum cholesterol in the Women's Health
Study (unpublished data by RJG). Thus, self-reported cholesterol is not a surrogate for
measured cholesterol in this setting and regression calibration to correct for measurement error
in the self-reported cholesterol values, based on measured serum cholesterol in a validation
study, would be invalid because surrogacy is violated.

We here present the results of a simulation study assessing the performance of PSC under a
wide range of parameter constellations and in settings with and without violation of surrogacy,
and we discuss the meaning of surrogacy using practical examples.

METHODS
Propensity score calibration

Assume a main cohort study with a dichotomous exposure of interest, A, a dichotomous
outcome of interest, Y, and information on two confounders, X1 and X2. An additional third
confounder, C, is observed in a separate validation study only, together with exposure A and
confounders X1 and X2.

To control for confounding in the main study, we first estimate the propensity score given the
two observed confounders, X1 and X2, by fitting a logistic regression model with exposure as
the dependent variable. Since this propensity score is estimated without information on the
third confounder C, we call this the error-prone (EP) propensity score:
PSEP = Pr(A = 1 ∣ X1, X2) = (1 + exp{ − (α0 + α1X1 + α2X2)})−1. (1)

This estimated propensity score is then used as a continuous summary confounding variable
to control for confounding in the main study. We use a logistic model to approximate the
cumulative incidence of disease:

Pr Y = 1 ∣ A, PSEP = (1 + exp{ − (β0 + β1A + β2PSEP)})−1. (2)

In the validation sample, we then estimate both PSEP, as a function of X1 and X2 (equation 1),
and the gold-standard (GS) propensity score PSGS, as a function of X1,X2, and C. Following
the general notation introduced for the PS, we define

PSGS = Pr(A = 1 ∣ X1, X2, C) = (1 + exp{ − (γ0 + γ1X1 + γ2X2 + γ3C)})−1 (3)
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as the gold-standard propensity score. The linear measurement error model which is the basis
for regression calibration (15,16) then is:

E PSGS ∣ A, PSEP = δ0 + δ1A + δ2PSEP. (4)

Assuming that the outcome is a function of the exposure and PSGS
Pr Y = 1 ∣ A, PSGS = (1 + exp{ − (η0 + η1A + η2PSGS)})−1, (5)

the regression calibration adjusted estimator for the effect of A under the assumption of no
additional unmeasured confounding given PSGS then is (13):

η̂1 = β̂1 − δ̂1β̂2 ∕ δ̂2 (6)

based on the estimates from equations 2 (ß1 ß2) and 4 (δ1, δ2). We used the logistic link in
equations 2 and 5 despite the non-collapsibility of the odds ratio under exchangeability of
exposed and unexposed given PSGS, because regression calibration has not yet been evaluated
for relative risk or Poisson outcome models. Corrected estimates for the variances account for
the additional uncertainty caused by the estimation of δ in the validation study.

Regression calibration can also be implemented as a single imputation of the gold-standard
variable based on the parameters of the measurement error model in the validation study
(equation 4) and the values of X1,X2, and A observed in the main study (17). Since in PSC the
gold-standard variable is a propensity score, single imputation of the PSGS makes it possible
to implement matching on or stratification by this imputed PS, rather than controlling for the
PS as a single continuous covariate in the outcome model (19). Analyses matched on the PS
might be advantageous, since they are not based on comparisons outside a common range of
PS for exposed and unexposed (19). Stratification by the PS can also be restricted to this
common range.

For these reasons we implemented PSC in all simulations by first imputing missing values of
PSGS based on equation 4 (i.e. as a function of exposure and PSEP, but not disease outcome)
rather than by using equation 6. We then matched a single unexposed observation to every
exposed observation on this imputed value of PSGS using greedy matching (20). Greedy
matching starts using a very narrow caliper of the PS (to the 5th decimal place) to find an
unexposed match for every exposed observation and if unsuccessful widens the caliper in 1
decimal steps up to the first decimal place (20). Greedy matching is a frequently-used algorithm
in this setting (21) because it achieves close matching with a high proportion of exposed
observations for whom an unexposed match can be found. The proportion of exposed
observations that could be matched to unexposed ones on the imputed PSGS is an inverse
function of the ability of the PS to predict exposure and was above 85 percent in most scenarios
(range: 72 to 99 percent). High values are necessary for a causal contrast (“what would have
happened to the exposed had they been unexposed”). The values in our simulations are well
within the range observed in published applications of propensity score analyses (21).

The exposure-outcome association in matched pairs was then estimated using conditional
logistic regression to increase efficiency. To obtain 95 percent confidence limits for this
estimate, we took 1,000 bootstraps sampling on matched pairs with replacement that were again
analyzed with conditional logistic regression. We used the empirical distribution of these
estimates (2.5th and 97.5th percentiles) to assign a lower and an upper bound of the confidence
interval to the PSC estimate and assessed whether the true value of the log odds ratio of the
exposure-outcome association was covered by this non-parametric confidence interval.
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Simulation study
Let the exposure of interest, A, and the outcome of interest, Y, both be dichotomous variables.
The confounders X1, X2, and C are independent standard normal variables with a mean of 0
and unit variance. The probability that an observation is exposed (A=1) given confounders
X1, X2, and C corresponds to PSGS (equation 3).

The probability that an observation has the outcome (Y=1) given the exposure A and PSGS is
given by equation 5. Using this model, the association between individual confounders X1,
X2, C and disease is defined by their association with exposure and the association of PSGS
with disease. In particular, the association between the confounder C and disease cannot be
varied independently of the confounders X1 and X2.

In these simulations with disease as a function of A and PSGS (equation 5), surrogacy (13,17,
18) of PSEP is present by design, because PSEP is based on a subset of covariates contained in
PSGS and disease is a (log) linear function of PSGS (and A) only.

To allow surrogacy to be violated, we conducted a second set of simulations where the expected
value of the dichotomous disease outcome Y given the exposure A as well as the confounders
X1, X2, and C is defined as

Pr Y = 1 ∣ A, X1, X2, C = (1 + exp{ − (θ0 + θ1A + θ2X1 + θ3X2 + θ4C)})−1. (7)

Because the disease is now no longer simulated as a function of PSGS, there are fewer
constraints with respect to the association between PSEP and the disease outcome. Thus, in
contrast to the first set of simulations, surrogacy might be violated in the second set.

Using these expected values, we simulated 1,000 datasets for each parameter constellation.
Although simulated for the whole dataset, the confounder C is deleted from the main study and
only observed in a random validation sample, whereas X1 and X2 are observed in the main
study and the validation sample.

Since our validation study contains outcome information, we are able to assess surrogacy.
Following the logistic form of equation 7, we fitted a logistic regression model with the disease
outcome Y as a function of A, PSGS, and PSEP

Pr Y = 1 ∣ A, PSGS, PSEP = (1 + exp{ − (ν0 + ν1A + ν2PSGS + ν3PSEP)})−1. (8)

In the absence of a specific test for surrogacy, we used two measures: first, we performed a
likelihood ratio test (LRT) for the predictive value of PSEP independent of PSGS and A, i.e.
comparing the full model (equation 8) to a model without PSEP. Second, we assessed the
percent of the variance in Y explained by PSGS and PSEP which is due to PSGS. This ratio of
pseudo R-squares was calculated as the ratio of the likelihood-ratio comparing logistic
regression model logit(Y) = ν′0 + ν′1A + ν′2PSGS with the nested logistic regression model
logit(Y) = ν″0 + ν″1A and of the likelihood-ratio comparing the full model (equation 8) with
the nested logistic regression model logit(Y) = ν″0 + ν″1A times 100 (22). Values close to the
maximum possible value of 100 percent suggest that surrogacy holds.

Parameters
The parameters used in the basic scenario as well as the range of parameters covered in these
simulations is shown in table 1. In the basic scenario we assume a prevalence of the exposure
of 20 percent (PA=0.2), a cumulative incidence of disease of 1 percent (IY=0.01), no association
between the exposure and disease (ORAY=1), a main study size of 10,000 (NMAIN=10,000),
and a 10 percent validation sample (%VAL=10).
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In all scenarios of both the first and second set of simulations, both X1 and X2 are inversely
associated with exposure (γ1 =−0.405 and γ2 =−0.405, corresponding to an ORXAof 0.67).

In the first set of simulations (equation 5), the associations between the confounders and disease
are defined by the association between PSGS and disease. The value for the basic scenario
(η2 =−9) reflects a reasonable relation between the PS, which is bounded between 0 and 1 and
often has low variability, and risk of disease. In the second set of simulations (equation 7), both
X1 and X2 are risk factors for disease (π1=0.405 and π2=0.405, corresponding to an ORXY of
1.5). Therefore, X1 and X2 lead to confounding towards lower values of the exposure-disease
association (see downward arrow in table 3).

RESULTS
In table 2 we present the results of the first set of simulations, i.e. when simulating the disease
as a function of the exposure and PSGS (equation 5) and thus surrogacy holds by design. The
following parameters are varied around the value of the basic scenario: the cumulative
incidence of disease IY, the odds ratio of the exposure-of-interest disease association ORAY,
the odds ratio of the unobserved confounder-exposure association ORCA, the log odds ratio of
the PSGS-disease association η2, the size of the main study NMAIN, and the percentage of
persons in the random validation sample %VAL. These parameters are varied while keeping all
other parameters at the value of the basic scenario typed in italics and presented in table 1. In
particular, the true ORAY is 1.0 in all scenarios, except for the two rows with ORAY=2 and
ORAY=0.5. For easy comparison of the magnitude and the direction of confounding, we present
the median crude ORAY and the median ORAY adjusting for PSEP based on the observed
covariates X1 and X2 only (equation 2) in the main study.

In all scenarios assessed, median estimates of ORAY from PSC are close to the true value and
the percent bias reduction (where applicable) is between 71 and 110 percent, except when
NMAIN=1,000. A bias reduction of 100 represents complete control of bias (no residual
confounding) and values exceeding 100 represent overcorrection. In some scenarios (marked
with ‡), percent bias reduction is either undefined (since the expected value of the estimator
controlling for X1 and X2 only is unbiased) or not meaningful, since there is little residual bias
(and thus the denominator of the percent bias reduction is close to 0). The coverage of the 95
percent confidence interval ranges from 86.0 to 95.9 percent (except when NMAIN=1,000) and
is near nominal in many scenarios. Coverage is reduced with increasing incidence of disease
(IY), odds ratios of the exposure-disease association (ORAY) away from the null, and
decreasing size of the validation study (%VAL).

In table 3 we show the results when the disease occurrence is simulated as a function of
exposure and the three individual covariates (equation 7) to allow surrogacy to be violated. We
present the median and interquartile range of the odds ratios of the exposure disease association
ORAY, the median percent bias reduction for selected parameters using PSC, and the two
diagnostics for a violation of the surrogacy assumption. Instead of the log odds ratio of the
PSGS-disease association η2 varied in the first set of simulations, ORCY is varied for ORCA of
0.5 and 2.0, respectively.

Since surrogacy can be violated when disease occurrence is simulated as a function of the
individual covariates (equation 7), we include the results of the two proposed diagnostics for
the surrogacy assumption, i.e. the LRT for PSEP and the percent variance of Y due to PSGS
and PSEP explained by PSGS.

When the surrogacy assumption holds, i.e. when the median p-value of the LRT is higher than
0.3 and percent variance explained by PSGS is more than 73.8 percent in the scenarios assessed,
the median ORAY is very close to the true value and percent bias reduction ranges from 32 to
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106 percent, accordingly (except when NMAIN=1,000). The coverage of the 95 percent
confidence interval is close to nominal in these scenarios, with coverage decreasing with
increasing incidence of disease (IY) and decreasing size of the validation sample (%VAL).

PSC is biased, however, when ORCA=2 and ORCY=2, when ORCA=0.5 and ORCY=0.5, when
ORCA=0.5 and ORCY=1, when ORCA=2 and ORCY=1 (some scenarios are presented twice to
allow easy assessment of variation of one of the parameters). These scenarios can be
characterized by the additional confounding due to the unobserved covariate C not acting in
the same direction as the confounding by the observed covariates X (see arrows). They all show
indications for violation of the surrogacy assumption: the median p-value of LRT is 0.2 or less
and the percent variance explained by PSGS is low (less than 45.5 percent in the scenarios
assessed).

The only apparent exception seems to be the scenario with ORCA=1, where the LRT (0.05)
and the percent variance explained by PSGS (43.6 percent) indicate a violation of the surrogacy
assumption but PSC is nevertheless unbiased. Since there is by definition no residual
confounding when ORCA=1, the analysis controlling for X1 and X2 leads to an unbiased
estimate. When ORCA=1, PSC is unbiased despite indications for violation of surrogacy since
C is not associated with exposure and therefore not a confounder. When ORCA=1, surrogacy
is violated since the inclusion of C adds unnecessary variability to PSGS compared with
PSEP (23). Therefore, surrogacy is a sufficient but not always necessary condition for PSC to
be valid.

DISCUSSION
We evaluated the performance of propensity score calibration using simulations over a wide
range of parameter-values. These results should be interpreted in light of the specific parameter-
values we selected for our settings. These values resulted in strong, but not unrealistic,
unmeasured confounding in the main study (e.g. such as might be plausible for the association
between self-selected hormone therapy and myocardial infarction in postmenopausal women).
PSC was always valid in the first set of simulations (table 2), i.e. when simulating the disease
as a (log)linear function of PSGS according to the target model of PSC and thus surrogacy holds
by design. The second set of simulations, however, indicates that the approach may increase
rather than decrease bias if surrogacy is violated (table 3). Generally speaking, surrogacy is
violated when the direction of confounding of the exposure-disease association caused by the
unobserved variable(s) differs from that of the confounding due to observed variables. One
can use different diagnostics to assess violations of surrogacy if the validation study contains
sufficient information on the outcome.

Despite the intuition that adding an unmeasured confounder to the PS would always introduce
differential measurement error and thus violate surrogacy, surrogacy holds when the direction
of confounding of the observed and unobserved variables(s) is the same, as evinced by our
simulations. In such settings, adding the confounder to the PS increases the strength of
association between the PS and the disease outcome. All of the association between PSEP and
the outcome might therefore be captured in PSGS, which results in surrogacy. If the direction
of the confounding by the unmeasured confounder(s) is different from the direction of the
measured confounder(s), including the unmeasured confounder in the PS reduces the strength
of association between the PS and disease outcome. Therefore, PSEP is more strongly
associated with disease risk than PSGS, thus violating surrogacy.

Simulations cannot allow a quantitative assessment of how frequently surrogacy holds or is
violated in epidemiologic studies. Many informal and other formal sensitivity analyses of
residual confounding also depend on the assumption of uni-directionality of confounding (e.g.
24,25,26). This assumption is plausible in many but not all epidemiologic settings, especially
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since PSC addresses the joint confounding of a set of observed and unobserved covariates
rather than a single covariate. In such a setting, the surrogacy assumption might be plausible
if an underlying and well understood framework for confounding is consistent with surrogacy.
Practical examples for such a framework include variables used in claims data (e.g. chronic
obstructive pulmonary disease, being admitted to a nursing home) as a proxy for the
unmeasured covariate of interest (e.g. smoking and frailty, respectively). In such settings, a
more refined PS, based on alternative measures with less error compared with those measured
in the main study (e.g. smoking and activities of daily living or cognitive function,
respectively), might be hypothesized to contain all the relevant information on propensity of
exposure captured in an error-prone PS. Thus surrogacy might be a plausible assumption in
such settings.

The direction of confounding introduced by any single unobserved covariate may be
unpredictable and thus clearly lead to a violation of surrogacy of PSEP estimated without
information on that covariate. Prior knowledge about the association of that covariate with the
study outcome might be used as a warning sign in case outcome information is not available
in the validation study. As in regression analyses, inclusion of a covariate unrelated to disease
should be avoided. In PS analyses, not including such a covariate would lead to an increase in
efficiency (23). Because PSC is used to adjust for unmeasured confounding, including
covariates form a validation study thought to be unrelated to disease (ORCD=1) would make
no sense. Including only covariates from the validation study that truly are risk factors for the
disease outcome would avoid biased results due to violation of surrogacy in two out of the four
settings assessed where PSC was biased.

The assumption necessary for PSC to be valid can further be conceptualized in the framework
of instrumental variables (27). One critical assumption of instrumental variable analysis is that
the instrument is unrelated to the outcome given the exposure of interest (28). Similarly, PSC
is valid if PSEP is independent of disease given exposure of interest and PSGS.

If the validation study contains data on disease outcome, fitting a model of the outcome as a
function of these two propensity scores and exposure in the (internal) validation study allows
one to test surrogacy before applying PSC. The proposed tests for surrogacy performed well
in the scenarios assessed. The cut-points we used were chosen according to the scenarios
assessed, however, and are arbitrary. The power of the likelihood ratio test to detect violations
of surrogacy will depend on the size of the validation study. The percentage of variance in
outcome explained by PSGS might therefore be preferred in validation studies with few
outcomes.

PSC based on regression calibration as proposed by Rosner et al. (15,16) had a tendency to
‘over-adjust’ even in scenarios where surrogacy was met. Furthermore, standard errors of the
adjusted estimate obtained from regression calibration were consistently smaller than the
empirical variance of the adjusted estimates across all simulations leading to non-nominal
coverage of the confidence intervals (data not shown). We therefore implemented PSC as a
single imputation according to Carroll et al. (17), which allowed matching on the imputed
PSGS. Matching on the imputed PSGS and using bootstrapping to obtain a robust estimate of
the variance solved both problems, resulting in nominal coverage probabilities for most
scenarios assessed.

Coverage probabilities decreased with increasing incidence of the disease outcome and
decreasing size of the validation sample. A rare disease outcome is a general assumption of
regression calibration (16) and is likely to be exacerbated in PSC owing to the problem of the
non-collapsibility of the odds ratio under exchangeability of exposed and unexposed given
PSGS (29). The lower coverage probabilities with smaller sizes of the validation study might
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be an indication of problems due to model misspecification or non-convergence. Coverage
probabilities are meaningless for biased estimators, since they would approach 0 with
increasing study size. Despite this, we present coverage probabilities for all scenarios because
scenarios with only small residual bias are likely to converge to unbiased ones with increasing
study size and number of simulations.

Regression calibration approximations are known to fail when the measurement error is large
(30,31), as when the correlation between the estimated error-prone and gold standard
measurements is weak. Kuha observed that the performance of regression calibration degrades
if the product of the squared estimate and its mean squared error exceeds 0.5 (30). In our
scenarios, the median of this value ranged from 0.48 to 0.66, corresponding to a range where
problems can be expected in a large proportion of simulated datasets. Since PSGS captures all
of the confounding in a single covariate, misspecification of its association with the outcome
is likely to reduce its ability to control for confounding (32). The linear measurement error
model of regression calibration is only one possible model to relate PSGS to PSEP.

Besides surrogacy, the validity of PSC is dependent on additional assumptions underlying all
epidemiologic analyses. Even with validation data, it is unlikely that all confounders are
measured with sufficient accuracy and therefore unmeasured confounding can never be
completely ruled out. Residual or unmeasured confounding is only one aspect of uncertainty
in epidemiologic studies (33) and considering multiple forms of biases is worthwhile (34,35).

We conclude that propensity score calibration to adjust for unmeasured confounding with
validation data is a useful approach to reduce residual bias when the error-prone propensity
score estimated in the main study is a surrogate for the true gold-standard propensity score.
Like any method addressing unmeasured covariates or missing data, PSC is not a substitute
for having all covariates adequately measured. If surrogacy is violated, PSC might increase
rather than decrease bias. In the usual setting of validation studies without information on
outcomes, PSC is likely but not guaranteed to improve estimates if an underlying theory about
the confounding pattern is consistent with the necessary assumption. Adding measures of
disease outcome to validation studies would allow epidemiologists to expand the application
of PSC without relying on a strong surrogacy assumption.
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