73 research outputs found

    Wave mixing of optical pulses and Bose-Einstein condensates

    Full text link
    We investigate theoretically the four-wave mixing of optical and matter waves resulting from the scattering of a short light pulse off an atomic Bose-Einstein condensate, as recently demonstrated by D. Schneble {\em et al.} [ Science {\bf 300}, 475 (2003)]. We show that atomic ``pair production'' from the condensate results in the generation of both forward- and backward-propagating matter waves. These waves are characterized by different phase-matching conditions, resulting in different angular distributions and temporal evolutions.Comment: 4+\epsilon pages, 3 figure

    Interspecies entanglement with impurity atoms in a lattice gas

    Get PDF
    The dynamics of impurity atoms introduced into bosonic gases in an optical lattice have generated a lot of recent interest, both in theory and experiment. We investigate to what extent measurements on either the impurity species or the majority species in these systems are affected by their interspecies entanglement. This arises naturally in the dynamics and plays an important role when we measure only one species. We explore the corresponding effects in strongly interacting regimes, using a combination of few-particle analytical calculations and density matrix renormalisation group methods in one dimension. We identify how the resulting effects on impurities can be used to probe the many-body states of the majority species, and separately ask how to enter regimes where this entanglement is small, so that the impurities can be used as probes that do not significantly affect the majority species. The results are accessible in current experiments, and provide important considerations for the measurement of complex systems with using few probe atoms

    Improvement by laser quenching of an "atom diode": a one-way barrier for ultra-cold atoms

    Full text link
    Different laser devices working as ``atom diodes'' or ``one-way barriers'' for ultra-cold atoms have been proposed recently. They transmit ground state level atoms coming from one side, say from the left, but reflect them when they come from the other side. We combine a previous model, consisting of the stimulated Raman adiabatic passage (STIRAP) from the ground to an excited state and a state-selective mirror potential, with a localized quenching laser which produces spontaneous decay back to the ground state. This avoids backwards motion, provides more control of the decay process and therefore a more compact and useful device.Comment: 6 page

    Inelastic chaotic scattering on a Bose-Einstein condensate

    Full text link
    We devise a microscopic scattering approach to probe the excitation spectrum of a Bose-Einstein condensate. We show that the experimentally accessible scattering cross section exhibits universal Ericson fluctuations, with characteristic properties rooted in the underlying classical field equations.Comment: 11 pages, 5 figure

    Atomic interaction effects in the superradiant light scattering from a Bose-Einstein condensate

    Get PDF
    We investigate the effects of the atomic interaction in the Superradiant Rayleigh scattering from a Bose-Einstein condensate driven by a far-detuned laser beam. We show that for a homogeneous atomic sample the atomic interaction has only a dispersive effect, whereas in the inhomogeneous case it may increase the decay of the matter-wave grating.Comment: 12 pages, 4 figures, presented to the XII International Laser Physics Workshop, August 24-29, Hamburg, to be published in Laser Physic

    Single-electron population and depopulation of an isolated quantum dot using a surface-acoustic-wave pulse

    Get PDF
    We use a pulse of surface acoustic waves (SAWs) to control the electron population and depopulation of a quantum dot. The barriers between the dot and reservoirs are set high to isolate the dot. Within a time scale of similar to 100 s the dot can be set to a nonequilibrium charge state, where an empty (occupied) level stays below (above) the Fermi energy. A pulse containing a fixed number of SAW periods is sent through the dot, controllably changing the potential, and hence the tunneling probability, to add (remove) an electron to (from) the dot

    Sequential superradiant scattering from atomic Bose-Einstein condensates

    Full text link
    We theoretically discuss several aspects of sequential superradiant scattering from atomic Bose-Einstein condensates. Our treatment is based on the semiclassical description of the process in terms of the Maxwell-Schroedinger equations for the coupled matter-wave and optical fields. First, we investigate sequential scattering in the weak-pulse regime and work out the essential mechanisms responsible for bringing about the characteristic fan-shaped side-mode distribution patterns. Second, we discuss the transition between the Kapitza-Dirac and Bragg regimes of sequential scattering in the strong-pulse regime. Finally, we consider the situation where superradiance is initiated by coherently populating an atomic side mode through Bragg diffraction, as in studies of matter-wave amplification, and describe the effect on the sequential scattering process.Comment: 9 pages, 4 figures. Submitted to Proceedings of LPHYS'06 worksho

    Versatile transporter apparatus for experiments with optically trapped Bose-Einstein condensates

    Full text link
    We describe a versatile and simple scheme for producing magnetically and optically-trapped Rb-87 Bose-Einstein condensates, based on a moving-coil transporter apparatus. The apparatus features a TOP trap that incorporates the movable quadrupole coils used for magneto-optical trapping and long-distance magnetic transport of atomic clouds. As a stand-alone device, this trap allows for the stable production of condensates containing up to one million atoms. In combination with an optical dipole trap, the TOP trap acts as a funnel for efficient loading, after which the quadrupole coils can be retracted, thereby maximizing optical access. The robustness of this scheme is illustrated by realizing the superfluid-to-Mott insulator transition in a three-dimensional optical lattice

    Ocrelizumab exposure in relapsing–remitting multiple sclerosis: 10-year analysis of the phase 2 randomized clinical trial and its extension

    Get PDF
    Open-label extension (OLE) studies help inform long-term safety and efficacy of disease-modifying therapies in multiple sclerosis (MS). We report exploratory analyses from a phase 2 trial on the longest follow-up to date of ocrelizumab-treated patients with relapsing–remitting MS (RRMS). The primary treatment period (PTP) comprised four 24-week treatment cycles; participants were randomized to double-blind ocrelizumab (2000 mg or 600 mg), placebo, or interferon β-1a (open label) for one cycle, then dose-blinded ocrelizumab 1000 mg or 600 mg for the remaining cycles. The PTP was followed by consecutive assessed and unassessed treatment-free periods (TFPs) and then the OLE (ocrelizumab 600 mg every 24 weeks). Safety and efficacy were prospectively assessed. Of 220 participants randomized, 183 (84%) completed the PTP. After the TFP, 103 entered OLE (median OLE ocrelizumab exposure 6.5 years). Most common adverse events across all periods were infusion-related reactions. MRI activity, annualized relapse rate, and confirmed disability progression (CDP) rates remained low throughout. During the assessed TFP, there was a trend toward less and later B-cell repletion, and later CDP, for patients randomized to ocrelizumab; MRI activity was observed in 16.3% of patients, the earliest 24 weeks after the last ocrelizumab dose. This is the longest follow-up of ocrelizumab-treated patients with RRMS, with no new safety signals emerging during an observation period from 2008 to 2020. Results reinforce the sustained efficacy of long-term ocrelizumab. Reduced disease activity was maintained following interruption of 6-month dosing cycles, with no evidence of rebound
    • …
    corecore