15 research outputs found

    SPECT- and PET-Based Approaches for Noninvasive Diagnosis of Acute Renal Allograft Rejection

    Full text link
    Molecular imaging techniques such as single photon emission computed tomography (SPECT) or positron emission tomography are promising tools for noninvasive diagnosis of acute allograft rejection (AR). Given the importance of renal transplantation and the limitation of available donors, detailed analysis of factors that affect transplant survival is important. Episodes of acute allograft rejection are a negative prognostic factor for long-term graft survival. Invasive core needle biopsies are still the “goldstandard” in rejection diagnostics. Nevertheless, they are cumbersome to the patient and carry the risk of significant graft injury. Notably, they cannot be performed on patients taking anticoagulant drugs. Therefore, a noninvasive tool assessing the whole organ for specific and fast detection of acute allograft rejection is desirable. We herein review SPECT- and PET-based approaches for noninvasive molecular imaging-based diagnostics of acute transplant rejection

    Hydroxyfasudil-Mediated Inhibition of ROCK1 and ROCK2 Improves Kidney Function in Rat Renal Acute Ischemia-Reperfusion Injury

    Get PDF
    Renal ischemia-reperfusion (IR) injury (IRI) is a common and important trigger of acute renal injury (AKI). It is inevitably linked to transplantation. Involving both, the innate and the adaptive immune response, IRI causes subsequent sterile inflammation. Attraction to and transmigration of immune cells into the interstitium is associated with increased vascular permeability and loss of endothelial and tubular epithelial cell integrity. Considering the important role of cytoskeletal reorganization, mainly regulated by RhoGTPases, in the development of IRI we hypothesized that a preventive, selective inhibition of the Rho effector Rho-associated coiled coil containing protein kinase (ROCK) by hydroxyfasudil may improve renal IRI outcome. Using an IRI-based animal model of AKI in male Sprague Dawley rats, animals treated with hydroxyfasudil showed reduced proteinuria and polyuria as well as increased urine osmolarity when compared with sham-treated animals. In addition, renal perfusion (as assessed by 18F-fluoride Positron Emission Tomography (PET)), creatinine- and urea-clearances improved significantly. Moreover, endothelial leakage and renal inflammation was significantly reduced as determined by histology, 18F-fluordesoxyglucose-microautoradiography, Evans Blue, and real-time PCR analysis. We conclude from our study that ROCK-inhibition by hydroxyfasudil significantly improves kidney function in a rat model of acute renal IRI and is therefore a potential new therapeutic option in humans

    Non-Invasive Imaging of Acute Renal Allograft Rejection in Rats Using Small Animal 18F-FDG-PET

    Get PDF
    BACKGROUND: At present, renal grafts are the most common solid organ transplants world-wide. Given the importance of renal transplantation and the limitation of available donor kidneys, detailed analysis of factors that affect transplant survival are important. Despite the introduction of new and effective immunosuppressive drugs, acute cellular graft rejection (AR) is still a major risk for graft survival. Nowadays, AR can only be definitively by renal biopsy. However, biopsies carry a risk of renal transplant injury and loss. Most important, they can not be performed in patients taking anticoagulant drugs. METHODOLOGY/PRINCIPAL FINDINGS: We present a non-invasive, entirely image-based method to assess AR in an allogeneic rat renal transplantation model using small animal positron emission tomography (PET) and (18)F-fluorodeoxyglucose (FDG). 3 h after i.v. injection of 30 MBq FDG into adult uni-nephrectomized, allogeneically transplanted rats, tissue radioactivity of renal parenchyma was assessed in vivo by a small animal PET-scanner (post operative day (POD) 1,2,4, and 7) and post mortem dissection. The mean radioactivity (cps/mm(3) tissue) as well as the percent injected dose (%ID) was compared between graft and native reference kidney. Results were confirmed by histological and autoradiographic analysis. Healthy rats, rats with acute CSA nephrotoxicity, with acute tubular necrosis, and syngeneically transplanted rats served as controls. FDG-uptake was significantly elevated only in allogeneic grafts from POD 1 on when compared to the native kidney (%ID graft POD 1: 0.54+/-0.06; POD 2: 0.58+/-0.12; POD 4: 0.81+/-0.06; POD 7: 0.77+/-0.1; CTR: 0.22+/-0.01, n = 3-28). Renal FDG-uptake in vivo correlated with the results obtained by micro-autoradiography and the degree of inflammatory infiltrates observed in histology. CONCLUSIONS/SIGNIFICANCE: We propose that graft FDG-PET imaging is a new option to non-invasively, specifically, early detect, and follow-up acute renal rejection. This method is potentially useful to improve post-transplant rejection monitoring

    SPECT- and PET-Based Approaches for Noninvasive Diagnosis of Acute Renal Allograft Rejection

    No full text
    Molecular imaging techniques such as single photon emission computed tomography (SPECT) or positron emission tomography are promising tools for noninvasive diagnosis of acute allograft rejection (AR). Given the importance of renal transplantation and the limitation of available donors, detailed analysis of factors that affect transplant survival is important. Episodes of acute allograft rejection are a negative prognostic factor for long-term graft survival. Invasive core needle biopsies are still the “goldstandard” in rejection diagnostics. Nevertheless, they are cumbersome to the patient and carry the risk of significant graft injury. Notably, they cannot be performed on patients taking anticoagulant drugs. Therefore, a noninvasive tool assessing the whole organ for specific and fast detection of acute allograft rejection is desirable. We herein review SPECT- and PET-based approaches for noninvasive molecular imaging-based diagnostics of acute transplant rejection

    Representative PET-images of dynamic whole body acquisitions of a series of an allogeneically transplanted rat (aTX) (POD 1 (A), 2 (B), 4 (C), and 7 (D), after tail vein injection of 30 MBq FDG (maximum a posterior (MAP) projection, 180 min p.i.).

    No full text
    <p>While the parenchyma (yellow circle) of renal allograft accumulates FDG with a maximum on POD 4, the native kidney (green circle) does not show any accumulation at any time. Please note that the renal pelvis can contain eliminated FDG. Therefore, it was excluded from the measurements.</p

    Signs of acute rejection, namely glomerulitis, tubulitis, endothelialitis, and graft infiltration, were found in the allograft group (aTX) starting from POD 1 (A).

    No full text
    <p>Nevertheless, graft integrity was confirmed on POD 1, 2, and 4. In contrast, histology of POD 7 showed the appearance of necrosis and hemorrhage within the allograft. No histological signs of rejection were found in native controls (leukocytes: 12±1/FOV, n = 18) or syngeneic transplants (sTX) (leukocytes: 26±4/FOV, n = 6). Leukocyte infiltration in kidneys with acute tubular necrosis (ATN, POD4, leukocytes: 17±3/FOV, n = 3) was moderate and emphasized in the outer medulla, while kidneys with acute cyclosporine toxicity (CSA) presented with only 7±1/FOV leukocytes (POD 4, n = 6). In allografts significant infiltration was found since POD 1 (B) (leukocytes: 77±2/FOV, all groups p<0.05 vs. sTX and CTR, n = 6). It aggravated on POD 2 (leukocytes: 98±12/FOV), peaked on POD 4 (leukocytes: 142±4/FOV), and was slightly lower on POD 7 (leukocytes: 115±2/FOV).</p
    corecore