8 research outputs found

    Apathy in Action: Baby Boomers\u27 Attitudes towards Product Placements in the Mass Media

    Get PDF
    Product placement, or the paid inclusion of branded products in to entertainment media, is a highly lucrative and popular practice. While much research has been done on the attitudes of college-aged individuals towards the practice of product placement, none had been conducted on any other populations’ attitudes towards product placements in media besides television and motion pictures. The current quantitatively-focused study employed a 23-question survey instrument to examine a baby boomer enumeration’s attitudes towards product placements in film, television, music videos, video games and internet web sites. Chi-square analysis, tests of correlation, ANOVA and simple means comparison were used to analyze the results. The majority of subjects approved of product placements in all media formats examined. When disapproval of product placements was voiced , it was towards the inclusion of alcohol or tobacco products in entertainment content aimed at children. Overall, the research in this study strengthened and extended the findings of previous studies to a baby boomer population

    A mock circulation loop to test extracorporeal CO2 elimination setups

    Get PDF
    Background: Extracorporeal carbon dioxide removal (ECCO2R) is a promising yet limited researched therapy for hypercapnic respiratory failure in acute respiratory distress syndrome and exacerbated chronic obstructive pulmonary disease. Herein, we describe a new mock circuit that enables experimental ECCO2R research without animal models. In a second step, we use this model to investigate three experimental scenarios of ECCO2R: (I) the influence of hemoglobin concentration on CO2 removal. (II) a potentially portable ECCO2R that uses air instead of oxygen, (III) a low-flow ECCO2R that achieves effective CO2 clearance by recirculation and acidification of the limited blood volume of a small dual lumen cannula (such as a dialysis catheter). Results: With the presented ECCO2R mock, CO2 removal rates comparable to previous studies were obtained. The mock works with either fresh porcine blood or diluted expired human packed red blood cells. However, fresh porcine blood was preferred because of better handling and availability. In the second step of this work, hemoglobin concentration was identified as an important factor for CO2 removal. In the second scenario, an air-driven ECCO2R setup showed only a slightly lower CO2 wash-out than the same setup with pure oxygen as sweep gas. In the last scenario, the low-flow ECCO2R, the blood flow at the test membrane lung was successfully raised with a recirculation channel without the need to increase cannula flow. Low recirculation ratios resulted in increased efficiency, while high recirculation ratios caused slightly reduced CO2 removal rates. Acidification of the CO2 depleted blood in the recirculation channel caused an increase in CO2 removal rate. Conclusions: We demonstrate a simple and cost effective, yet powerful, “in-vitro” ECCO2R model that can be used as an alternative to animal experiments for many research scenarios. Moreover, in our approach parameters such as hemoglobin level can be modified more easily than in animal models

    Comparison of Serial and Parallel Connections of Membrane Lungs against Refractory Hypoxemia in a Mock Circuit

    Get PDF
    Extracorporeal membrane oxygenation (ECMO) is an important rescue therapy method for the treatment of severe hypoxic lung injury. In some cases, oxygen saturation and oxygen partial pressure in the arterial blood are low despite ECMO therapy. There are case reports in which patients with such instances of refractory hypoxemia received a second membrane lung, either in series or in parallel, to overcome the hypoxemia. It remains unclear whether the parallel or serial connection is more effective. Therefore, we used an improved version of our full-flow ECMO mock circuit to test this. The measurements were performed under conditions in which the membrane lungs were unable to completely oxygenate the blood. As a result, only the photometric pre- and post-oxygenator saturations, blood flow and hemoglobin concentration were required for the calculation of oxygen transfer rates. The results showed that for a pre-oxygenator saturation of 45% and a total blood flow of 10 L/min, the serial connection of two identical 5 L rated oxygenators is 17% more effective in terms of oxygen transfer than the parallel connection. Although the idea of using a second membrane lung if refractory hypoxia occurs is intriguing from a physiological point of view, due to the invasiveness of the solution, further investigations are needed before this should be used in a wider clinical setting

    Comparison of Circular and Parallel-Plated Membrane Lungs for Extracorporeal Carbon Dioxide Elimination

    Get PDF
    Extracorporeal carbon dioxide removal (ECCO2R) is an important technique to treat critical lung diseases such as exacerbated chronic obstructive pulmonary disease (COPD) and mild or moderate acute respiratory distress syndrome (ARDS). This study applies our previously presented ECCO2R mock circuit to compare the CO2 removal capacity of circular versus parallel-plated membrane lungs at different sweep gas flow rates (0.5, 2, 4, 6 L/min) and blood flow rates (0.3 L/min, 0.9 L/min). For both designs, two low-flow polypropylene membrane lungs (Medos Hilte 1000, Quadrox-i Neonatal) and two mid-flow polymethylpentene membrane lungs (Novalung Minilung, Quadrox-iD Pediatric) were compared. While the parallel-plated Quadrox-iD Pediatric achieved the overall highest CO2 removal rates under medium and high sweep gas flow rates, the two circular membrane lungs performed relatively better at the lowest gas flow rate of 0.5 L/min. The low-flow Hilite 1000, although overall better than the Quadrox i-Neonatal, had the most significant advantage at a gas flow of 0.5 L/min. Moreover, the circular Minilung, despite being significantly less efficient than the Quadrox-iD Pediatric at medium and high sweep gas flow rates, did not show a significantly worse CO2 removal rate at a gas flow of 0.5 L/min but rather a slight advantage. We suggest that circular membrane lungs have an advantage at low sweep gas flow rates due to reduced shunting as a result of their fiber orientation. Efficiency for such low gas flow scenarios might be relevant for possible future portable ECCO2R devices

    A Novel Mock Circuit to Test Full-Flow Extracorporeal Membrane Oxygenation

    Get PDF
    Extracorporeal membrane oxygenation (ECMO) has become an important therapeutic approach in the COVID-19 pandemic. The development and research in this field strongly relies on animal models; however, efforts are being made to find alternatives. In this work, we present a new mock circuit for ECMO that allows measurements of the oxygen transfer rate of a membrane lung at full ECMO blood flow. The mock utilizes a large reservoir of heparinized porcine blood to measure the oxygen transfer rate of the membrane lung in a single passage. The oxygen transfer rate is calculated from blood flow, hemoglobin value, venous saturation, and post-membrane arterial oxygen pressure. Before the next measuring sequence, the blood is regenerated to a venous condition with a sweep gas of nitrogen and carbon dioxide. The presented mock was applied to investigate the effect of a recirculation loop on the oxygen transfer rate of an ECMO setup. The recirculation loop caused a significant increase in post-membrane arterial oxygen pressure (paO2 ). The effect was strongest for the highest recirculation flow. This was attributed to a smaller boundary layer on gas fibers due to the increased blood velocity. However, the increase in paO2 did not translate to significant increases in the oxygen transfer rate because of the minor significance of physically dissolved oxygen for gas transfer. In conclusion, our results regarding a new ECMO mock setup demonstrate that recirculation loops can improve ECMO performance, but not enough to be clinically relevant

    A Novel Mock Circuit to Test Full-Flow Extracorporeal Membrane Oxygenation

    No full text
    Extracorporeal membrane oxygenation (ECMO) has become an important therapeutic approach in the COVID-19 pandemic. The development and research in this field strongly relies on animal models; however, efforts are being made to find alternatives. In this work, we present a new mock circuit for ECMO that allows measurements of the oxygen transfer rate of a membrane lung at full ECMO blood flow. The mock utilizes a large reservoir of heparinized porcine blood to measure the oxygen transfer rate of the membrane lung in a single passage. The oxygen transfer rate is calculated from blood flow, hemoglobin value, venous saturation, and post-membrane arterial oxygen pressure. Before the next measuring sequence, the blood is regenerated to a venous condition with a sweep gas of nitrogen and carbon dioxide. The presented mock was applied to investigate the effect of a recirculation loop on the oxygen transfer rate of an ECMO setup. The recirculation loop caused a significant increase in post-membrane arterial oxygen pressure (paO2). The effect was strongest for the highest recirculation flow. This was attributed to a smaller boundary layer on gas fibers due to the increased blood velocity. However, the increase in paO2 did not translate to significant increases in the oxygen transfer rate because of the minor significance of physically dissolved oxygen for gas transfer. In conclusion, our results regarding a new ECMO mock setup demonstrate that recirculation loops can improve ECMO performance, but not enough to be clinically relevant

    Personalized management of elderly patients with rectal cancer: Expert recommendations of the European Society of Surgical Oncology, European Society of Coloproctology, International Society of Geriatric Oncology, and American College of Surgeons Commission on Cancer.

    Get PDF
    With an expanding elderly population and median rectal cancer detection age of 70 years, the prevalence of rectal cancer in elderly patients is increasing. Management is based on evidence from younger patients, resulting in substandard treatments and poor outcomes. Modern management of rectal cancer in the elderly demands patient-centered treatment, assessing frailty rather than chronological age. The heterogeneity of this group, combined with the limited available data, impedes drafting evidence-based guidelines. Therefore, a multidisciplinary task force convened experts from the European Society of Surgical Oncology, European Society of Coloproctology, International Society of Geriatric Oncology and the American College Surgeons Commission on Cancer, with the goal of identifying the best practice to promote personalized rectal cancer care in older patients. A crucial element for personalized care was recognized as the routine screening for frailty and geriatrician involvement and personalized care for frail patients. Careful patient selection and improved surgical and perioperative techniques are responsible for a substantial improvement in rectal cancer outcomes. Therefore, properly selected patients should be considered for surgical resection. Local excision can be utilized when balancing oncologic outcomes, frailty and life expectancy. Watch and wait protocols, in expert hands, are valuable for selected patients and adjuncts can be added to improve complete response rates. Functional recovery and patient-reported outcomes are as important as oncologic-specific outcomes in this age group. The above recommendations and others were made based on the best-available evidence to guide the personalized treatment of elderly patients with rectal cancer

    Literatur

    No full text
    corecore