187 research outputs found

    Effects of uniaxial pressure on polar whispering gallery modes in microspheres

    Get PDF
    We investigate the detuning of whispering gallery modes (WGMs) in solid polystyrene microspheres (PM) as a function of axisymmetric stress applied to two antipodal points of the microsphere we call poles. We specifically investigate WGMs passing close to these poles, so-called polar WGMs. The applied uniaxial pressure reduces the geometrical circumference of the PM but also increases locally the refractive index at the flattened poles. Our experiments show that the WGMs shift to higher frequencies with increasing pressure and that the magnitude of the strain-induced shift depends on the radial mode number n. Furthermore an energy splitting between azimuthal modes linearly increasing with the pressure is observed. A theoretical model based on a classical ray optics approach is presented which reproduces the main results of our experimental observations

    Standardisierungswettbewerb zwischen parametrisierbarer Standardsoftware und komponentenbasierten Anwendungssystemen

    Get PDF
    Standardisierungswettbewerb zwischen parametrisierbarer Standardsoftware und komponentenbasierten Anwendungssystemen / Stefan Volkert ; Bernd Reitwiesner. - In: Information age economy / Hans Ulrich Buhl ... (Hrsg.). - Heidelberg : Physica-Verl., 2001. - S. 667-68

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses

    Observation of geometric phases in quantum erasers

    Full text link
    We introduce a simple experiment involving a double-slit interferometer by which one can learn basic concepts of quantum interference such as which-path marking, quantum erasers, and geometric phases. Each of them exhibits seemingly mysterious phenomena in quantum physics. In our experiment, we use the double-slit interference of visible light with the polarization as an internal state to demonstrate the disappearance of fringes by which-path marking, recovery of interference using quantum erasers, and the rapid shifting of the fringe pattern induced by the geometric phase. We also present a simple theoretical analysis of an interferometer with an internal state.Comment: 7 pages, 14 figure

    Information in small neuronal ensemble activity in the hippocampal CA1 during delayed non-matching to sample performance in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The matrix-like organization of the hippocampus, with its several inputs and outputs, has given rise to several theories related to hippocampal information processing. Single-cell electrophysiological studies and studies of lesions or genetically altered animals using recognition memory tasks such as delayed non-matching-to-sample (DNMS) tasks support the theories. However, a complete understanding of hippocampal function necessitates knowledge of the encoding of information by multiple neurons in a single trial. The role of neuronal ensembles in the hippocampal CA1 for a DNMS task was assessed quantitatively in this study using multi-neuronal recordings and an artificial neural network classifier as a decoder.</p> <p>Results</p> <p>The activity of small neuronal ensembles (6-18 cells) over brief time intervals (2-50 ms) contains accurate information specifically related to the matching/non-matching of continuously presented stimuli (stimulus comparison). The accuracy of the combination of neurons pooled over all the ensembles was markedly lower than those of the ensembles over all examined time intervals.</p> <p>Conclusion</p> <p>The results show that the spatiotemporal patterns of spiking activity among cells in the small neuronal ensemble contain much information that is specifically useful for the stimulus comparison. Small neuronal networks in the hippocampal CA1 might therefore act as a comparator during recognition memory tasks.</p
    corecore