21,347 research outputs found
Kinetic Vlasov Simulations of collisionless magnetic Reconnection
A fully kinetic Vlasov simulation of the Geospace Environment Modeling (GEM)
Magnetic Reconnection Challenge is presented. Good agreement is found with
previous kinetic simulations using particle in cell (PIC) codes, confirming
both the PIC and the Vlasov code. In the latter the complete distribution
functions () are discretised on a numerical grid in phase space.
In contrast to PIC simulations, the Vlasov code does not suffer from numerical
noise and allows a more detailed investigation of the distribution functions.
The role of the different contributions of Ohm's law are compared by
calculating each of the terms from the moments of the . The important role
of the off--diagonal elements of the electron pressure tensor could be
confirmed. The inductive electric field at the X--Line is found to be dominated
by the non--gyrotropic electron pressure, while the bulk electron inertia is of
minor importance. Detailed analysis of the electron distribution function
within the diffusion region reveals the kinetic origin of the non--gyrotropic
terms
A comparison of optimal and noise-abatement trajectories of a tilt-rotor aircraft
The potential benefits of flight path control to optimize performance and/or reduce the noise of a tilt-rotor aircraft operating in the takeoff and landing phases of flight are investigated. A theoretical performance-acoustic model is developed and then mathematically flown to yield representative takeoff and landing profiles. Minimum-time and minimum-fuel trajectories are compared to proposed noise-abatement profiles to assess the reductions in annoyance possible through flight path control. Significant reductions are feasible if a nearly vertical-takeoff flight profile is flown near the landing site; however, the time expended and fuel consumed increase
Spacelab 3: Research in microgravity
The Spacelab 3 mission, which focused on research in microgravity, took place during the period April 29 through May 6, 1985. Spacelab 3 was the second flight of the National Aeronautics and Space Administration's modular Shuttle-borne research facility. An overview of the mission is presented. Preliminary scientific results from the mission were presented by investigators at a symposium held at Marshall Space Flight Center on December 4, 1985. This special issue is based on reports presented at that symposium
Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations
Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation
Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures
A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field
-Pb deep inelastic scattering
Nuclear-medium effects in the weak structure functions and
in the charged current neutrino and antineutrino induced deep
inelastic reactions in Pb have been studied. The calculations have been
performed in a theoretical model using relativistic nuclear spectral functions
which incorporate Fermi motion, binding and nucleon correlations.
We also consider the pion and rho meson cloud contributions calculated from a
microscopic model for meson-nucleus self-energies. Using these structure
functions, the results for the differential cross section have been obtained
and compared with the CERN Hybrid Oscillation Research apparatUS (CHORUS) data.
The results for the ratios ,
, ,
, and (i=2,3)
have also been obtained and a few have been compared with some of the
phenomenological fits.Comment: 19Pages, 12 Fig
Modeling of RTS noise in MOSFETs under steady-state and large-signal excitation
The behavior of RTS noise in MOSFETs under large-signal excitation is experimentally studied. Our measurements show a significant transient effect, in line with earlier reports. We present a new physical model to describe this transient behavior and to predict RTS noise in MOSFETs under large-signal excitation. With only three model parameters the behavior is well described, contrary to existing models
Self-normalizing phase measurement in multimode terahertz spectroscopy based on photomixing of three lasers
Photomixing of two near-infrared lasers is well established for
continuous-wave terahertz spectroscopy. Photomixing of three lasers allows us
to measure at three terahertz frequencies simultaneously. Similar to Fourier
spectroscopy, the spectral information is contained in an nterferogram, which
is equivalent to the waveform in time-domain spectroscopy. We use one fixed
terahertz frequency \nu_ref to monitor temporal drifts of the setup, i.e., of
the optical path-length difference. The other two frequencies are scanned for
broadband high-resolution spectroscopy. The frequency dependence of the phase
is obtained with high accuracy by normalizing it to the data obtained at
\nu_ref, which eliminates drifts of the optical path-length difference. We
achieve an accuracy of about 1-2 microns or 10^{-8} of the optical path length.
This method is particularly suitable for applications in nonideal environmental
conditions outside of an air-conditioned laboratory.Comment: 5 pages, 5 figure
Recommended from our members
The peregrine falcon's rapid dive: on the adaptedness of the arm skeleton and shoulder girdle
During a dive, peregrine falcons (Falco peregrinus) can reach a velocity of up to 320 km h− 1. Our computational fluid dynamics simulations show that the forces that pull on the wings of a diving peregrine can reach up to three times the falcon’s body mass at a stoop velocity of 80 m s− 1 (288 km h− 1). Since the bones of the wings and the shoulder girdle of a diving peregrine falcon experience large mechanical forces, we investigated these bones. For comparison, we also investigated the corresponding bones in European kestrels (Falco tinnunculus), sparrow hawks (Accipiter nisus) and pigeons (Columba livia domestica). The normalized bone mass of the entire arm skeleton and the shoulder girdle (coracoid, scapula, furcula) was significantly higher in F. peregrinus than in the other three species investigated. The midshaft cross section of the humerus of F. peregrinus had the highest second moment of area. The mineral densities of the humerus, radius, ulna, and sternum were highest in F. peregrinus, indicating again a larger overall stability of these bones. Furthermore, the bones of the arm and shoulder girdle were strongest in peregrine falcons
Submicron gate InP power MISFET's with improved output power density at 18 and 20 GHz
The microwave characteristics are presented at 18 and 20 GHz of submicron gate indium phosphide (InP) metal-insulator-semiconductor field-effect transistors (MISFET's) for high output power density applications. InP power MISFET's were fabricated and the output power density was investigated as a function of drain-source spacing. The best output power density and gain were obtained for drain-source spacing of 3 microns. The output power density is 2.7 times greater than was previously measured for InP MISFET's at 18 and 20 GHz, and the power-added efficiency also increased
- …