1,301 research outputs found

    Prostaglandin E2 metabolism in rat brain: Role of the blood-brain interfaces

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostaglandin E<sub>2 </sub>(PGE<sub>2</sub>) is involved in the regulation of synaptic activity and plasticity, and in brain maturation. It is also an important mediator of the central response to inflammatory challenges. The aim of this study was to evaluate the ability of the tissues forming the blood-brain interfaces to act as signal termination sites for PGE<sub>2 </sub>by metabolic inactivation.</p> <p>Methods</p> <p>The specific activity of 15-hydroxyprostaglandin dehydrogenase was measured in homogenates of microvessels, choroid plexuses and cerebral cortex isolated from postnatal and adult rat brain, and compared to the activity measured in peripheral organs which are established signal termination sites for prostaglandins. PGE<sub>2 </sub>metabolites produced <it>ex vivo </it>by choroid plexuses were identified and quantified by HPLC coupled to radiochemical detection.</p> <p>Results</p> <p>The data confirmed the absence of metabolic activity in brain parenchyma, and showed that no detectable activity was associated with brain microvessels forming the blood-brain barrier. By contrast, 15-hydroxyprostaglandin dehydrogenase activity was measured in both fourth and lateral ventricle choroid plexuses from 2-day-old rats, albeit at a lower level than in lung or kidney. The activity was barely detectable in adult choroidal tissue. Metabolic profiles indicated that isolated choroid plexus has the ability to metabolize PGE<sub>2</sub>, mainly into 13,14-dihydro-15-keto-PGE<sub>2</sub>. In short-term incubations, this metabolite distributed in the tissue rather than in the external medium, suggesting its release in the choroidal stroma.</p> <p>Conclusion</p> <p>The rat choroidal tissue has a significant ability to metabolize PGE<sub>2 </sub>during early postnatal life. This metabolic activity may participate in signal termination of centrally released PGE<sub>2 </sub>in the brain, or function as an enzymatic barrier acting to maintain PGE<sub>2 </sub>homeostasis in CSF during the critical early postnatal period of brain development.</p

    Overexpression of the urokinase receptor splice variant uPAR-del4/5 in breast cancer cells affects cell adhesion and invasion in a dose-dependent manner and modulates transcription of tumor-associated genes

    Get PDF
    mRNA levels of the urokinase receptor splice variant uPAR-del4/5 are associated with prognosis in breast cancer. Its overexpression in cancer cells affects tumor biologically relevant processes. In the present study, individual breast cancer cell clones displaying low vs. high uPAR-del4/5 expression were analyzed demonstrating that uPAR-del4/5 leads to reduced cell adhesion and invasion in a dose-dependent manner. Additionally, matrix metalloproteinase-9 (MMP-9) was found to be strongly upregulated in uPAR-del4/5 overexpressing compared to vector control cells. uPAR-del4/5 may thus play an important role in the regulation of the extracellular proteolytic network and, by this, influence the metastatic potential of breast cancer cells

    Targeted delivery of functionalized PLGA nanoparticles to macrophages by complexation with the yeast Saccharomyces cerevisiae

    Get PDF
    Nanoparticles (NPs) are able to deliver a variety of substances into eukaryotic cells. However, their usage is often hampered by a lack of specificity, leading to the undesired uptake of NPs by virtually all cell types. In contrast to this, yeast is known to be specifically taken up into immune cells after entering the body. Therefore, we investigated the interaction of biodegradable surface-modified poly(lactic-co-glycolic acid) (PLGA) particles with yeast cells to overcome the unspecificity of the particulate carriers. Cells of different Saccharomyces cerevisiae strains were characterized regarding their interaction with PLGA-NPs under isotonic and hypotonic conditions. The particles were shown to efficiently interact with yeast cells leading to stable NP/yeast-complexes allowing to associate or even internalize compounds. Notably, applying those complexes to a coculture model of HeLa cells and macrophages, the macrophages were specifically targeted. This novel nano-in-micro carrier system suggests itself as a promising tool for the delivery of biologically active agents into phagocytic cells combining specificity and efficiency

    Identification des cinétiques de cristallisation primaire et secondaire du polytétrafluoroéthylène (PTFE)

    Get PDF
    Cette étude s'intègre dans un ensemble de travaux sur la simulation numérique de la mise en oeuvre du PTFE par compaction à froid et frittage. Un modèle de cristallisation à partir de l'état fondu de type germination-croissance a été identifié à partir de différents essais sous chargements thermiques complexes

    Limb phase flexibility in walking:a test case in the squirrel monkey (Saimiri sciureus)

    Get PDF
    Abstract Background Previous analyses of factors influencing footfall timings and gait selection in quadrupeds have focused on the implications for energetic cost or gait mechanics separately. Here we present a model for symmetrical walking gaits in quadrupedal mammals that combines both factors, and aims to predict the substrate contexts in which animals will select certain ranges of footfall timings that (1) minimize energetic cost, (2) minimize rolling and pitching moments, or (3) balance the two. We hypothesize that energy recovery will be a priority on all surfaces, and will be the dominant factor determining footfall timings on flat, ground-like surfaces. The ability to resist pitch and roll, however, will play a larger role in determining footfall choice on narrower and more complex branch-like substrates. As a preliminary test of the expectations of the model, we collected sample data on footfall timings in a primate with relatively high flexibility in footfall timings – the squirrel monkey (Saimiri sciureus) – walking on a flat surface, straight pole, and a pole with laterally-projecting branches to simulate simplified ground and branch substrates. We compare limb phase values on these supports to the expectations of the model. Results As predicted, walking steps on the flat surface tended towards limb phase values that promote energy exchange. Both pole substrates induced limb phase values predicted to favor reduced pitching and rolling moments. Conclusions These data provide novel insight into the ways in which animals may choose to adjust their behavior in response to movement on flat versus complex substrates and the competing selective factors that influence footfall timing in mammals. These data further suggest a pathway for future investigations using this perspective

    Development of a Model-Informed Dosing Tool to Optimise Initial Antibiotic Dosing - A Translational Example for Intensive Care Units

    Get PDF
    The prevalence and mortality rates of severe infections are high in intensive care units (ICUs). At the same time, the high pharmacokinetic variability observed in ICU patients increases the risk of inadequate antibiotic drug exposure. Therefore, dosing tailored to specific patient characteristics has a high potential to improve outcomes in this vulnerable patient population. This study aimed to develop a tabular dosing decision tool for initial therapy of meropenem integrating hospital-specific, thus far unexploited pathogen susceptibility information. An appropriate meropenem pharmacokinetic model was selected from the literature and evaluated using clinical data. Probability of target attainment (PTA) analysis was conducted for clinically interesting dosing regimens. To inform dosing prior to pathogen identification, the local pathogen-independent mean fraction of response (LPIFR) was calculated based on the observed minimum inhibitory concentrations distribution in the hospital. A simple, tabular, model-informed dosing decision tool was developed for initial meropenem therapy. Dosing recommendations achieving PTA > 90% or LPIFR > 90% for patients with different creatinine clearances were integrated. Based on the experiences during the development process, a generalised workflow for the development of tabular dosing decision tools was derived. The proposed workflow can support the development of model-informed dosing tools for initial therapy of various drugs and hospital-specific conditions

    A prospective observational study

    Get PDF
    Background: Severe bacterial infections remain a major challenge in intensive care units because of their high prevalence and mortality. Adequate antibiotic exposure has been associated with clinical success in critically ill patients. The objective of this study was to investigate the target attainment of standard meropenem dosing in a heterogeneous critically ill population, to quantify the impact of the full renal function spectrum on meropenem exposure and target attainment, and ultimately to translate the findings into a tool for practical application. Methods: A prospective observational single-centre study was performed with critically ill patients with severe infections receiving standard dosing of meropenem. Serial blood samples were drawn over 4 study days to determine meropenem serum concentrations. Renal function was assessed by creatinine clearance according to the Cockcroft and Gault equation (CLCRCG). Variability in meropenem serum concentrations was quantified at the middle and end of each monitored dosing interval. The attainment of two pharmacokinetic/pharmacodynamic targets (100%T>MIC, 50%T>4×MIC) was evaluated for minimum inhibitory concentration (MIC) values of 2 mg/L and 8 mg/L and standard meropenem dosing (1000 mg, 30-minute infusion, every 8 h). Furthermore, we assessed the impact of CLCRCG on meropenem concentrations and target attainment and developed a tool for risk assessment of target non- attainment. Results: Large inter- and intra-patient variability in meropenem concentrations was observed in the critically ill population (n = 48). Attainment of the target 100%T>MIC was merely 48.4% and 20.6%, given MIC values of 2 mg/L and 8 mg/L, respectively, and similar for the target 50%T>4×MIC. A hyperbolic relationship between CLCRCG (25–255 ml/ minute) and meropenem serum concentrations at the end of the dosing interval (C8h) was derived. For infections with pathogens of MIC 2 mg/L, mild renal impairment up to augmented renal function was identified as a risk factor for target non- attainment (for MIC 8 mg/L, additionally, moderate renal impairment). Conclusions: The investigated standard meropenem dosing regimen appeared to result in insufficient meropenem exposure in a considerable fraction of critically ill patients. An easy- and free-to-use tool (the MeroRisk Calculator) for assessing the risk of target non-attainment for a given renal function and MIC value was developed
    • …
    corecore