1 research outputs found
Solving the stationary Liouville equation via a boundary element method
Intensity distributions of linear wave fields are, in the high frequency
limit, often approximated in terms of flow or transport equations in phase
space. Common techniques for solving the flow equations for both time dependent
and stationary problems are ray tracing or level set methods. In the context of
predicting the vibro-acoustic response of complex engineering structures,
reduced ray tracing methods such as Statistical Energy Analysis or variants
thereof have found widespread applications. Starting directly from the
stationary Liouville equation, we develop a boundary element method for solving
the transport equations for complex multi-component structures. The method,
which is an improved version of the Dynamical Energy Analysis technique
introduced recently by the authors, interpolates between standard statistical
energy analysis and full ray tracing, containing both of these methods as
limiting cases. We demonstrate that the method can be used to efficiently deal
with complex large scale problems giving good approximations of the energy
distribution when compared to exact solutions of the underlying wave equation