12 research outputs found

    Virtual Reality as Tool for Bioprinting Quality Inspection: A Proof of Principle

    Get PDF
    As virtual reality (VR) has drastically evolved over the past few years, the field of applications of VR flourished way beyond the gaming industry. While commercial VR solutions might be available, there is a need to develop a workflow for specific applications. Bioprinting represents such an example. Here, complex 3D data is generated and needs to be visualized in the context of quality control. We demonstrate that the transfer to a commercially available VR software is possible by introducing an optimized workflow. In the present work, we developed a workflow for the visualization of the critical quality attribute (cQA) cell distribution in bioprinted (extrusion-based) samples in VR. The cQA cell distribution is directly influenced by the pre-processing step mixing of cell material in the bioink. Magnetic Resonance Imaging (MRI) was used as an analytical tool to generate spatially resolved 2.5 and 3D data of the bioprinted objects. A sample with poor quality in respect of the cQA cell distribution was identified as its inhomogeneous cell distribution could be displayed spatially resolved in VR. The described workflow facilitates the usage of VR as a tool for quality inspection in the field of bioprinting and represents a powerful tool for visualization of complex 3D MRI data

    Magnetic resonance imaging as a tool for quality control in extrusion-based bioprinting

    Get PDF
    Bioprinting is gaining importance for the manufacturing of tailor-made hydrogel scaffolds in tissue engineering, pharmaceutical research and cell therapy. However, structure fidelity and geometric deviations of printed objects heavily influence mass transport and process reproducibility. Fast, three-dimensional and nondestructive quality control methods will be decisive for the approval in larger studies or industry. Magnetic resonance imaging (MRI) meets these requirements for characterizing heterogeneous soft materials with different properties. Complementary to the idea of decentralized 3D printing, magnetic resonance tomography is common in medicine, and image data processing tools can be transferred system-independently. In this study, a MRI measurement and image analysis protocol was evaluated to jointly assess the reproducibility of three different hydrogels and a reference material. Critical parameters for object quality, namely porosity, hole areas and deviations along the height of the scaffolds are discussed. Geometric deviations could be correlated to specific process parameters, anomalies of the ink or changes of ambient conditions. This strategy allows the systematic investigation of complex 3D objects as well as an implementation as a process control tool. Combined with the monitoring of metadata this approach might pave the way for future industrial applications of 3D printing in the field of biopharmaceutics

    Magnetic Resonance Imaging: Time-DependentWetting and Swelling Behavior of an Auxetic Hydrogel Based on Natural Polymers

    Get PDF
    A time-dependent understanding of swelling characteristics and external stimuli behavior is crucial for the development and understanding of functional hydrogels. Magnetic resonance imaging (MRI) offers the opportunity to study three-dimensional (3D) soft materials nondestructively. This technique is already widely used as an image-based medical diagnostic tool and is applied here to evaluate complex structures of a hydrogel—a double network of chemically crosslinked casein enhanced with alginate—fabricated by 3D printing. When hydrogel disks immersed in four different liquid systems were analyzed, the material exhibited distinct system-dependent behavior characterized by rheological and mechanical measurements. Further material functionalization was achieved by macroscopic structuring of the hydrogel as an auxetic material based on a re-entrant honeycomb structure. MRI offers the advantage of monitoring overall changes in the area of the analyzed specimen and internal structural changes simultaneously. To assess the behavior of this complex structure, a series of short MRI measurements, each lasting 1.7 min, captured liquid diffusion and thus structural swelling behavior. A clear dependence of external and internal structural changes as a function of liquid properties causing these changes was observed. In conclusion, this approach might pave the way for prospective applications to monitor liquid diffusion into (e.g., vascularization) and swelling behavior of functional hydrogels

    Structured Data Storage for Data-Driven Process Optimisation in Bioprinting

    Get PDF
    Bioprinting is a method to fabricate 3D models that mimic tissue. Future fields of application might be in pharmaceutical or medical context. As the number of applicants might vary between only one patient to manufacturing tissue for high-throughput drug screening, designing a process will necessitate a high degree of flexibility, robustness, as well as comprehensive monitoring. To enable quality by design process optimisation for future application, establishing systematic data storage routines suitable for automated analytical tools is highly desirable as a first step. This manuscript introduces a workflow for process design, documentation within an electronic lab notebook and monitoring to supervise the product quality over time or at different locations. Lab notes, analytical data and corresponding metadata are stored in a systematic hierarchy within the research data infrastructure Kadi4Mat, which allows for continuous, flexible data structuring and access management. To support the experimental and analytical workflow, additional features were implemented to enhance and build upon the functionality provided by Kadi4Mat, including browser-based file previews and a Python tool for the combined filtering and extraction of data. The structured research data management with Kadi4Mat enables retrospective data grouping and usage by process analytical technology tools connecting individual analysis software to machine-readable data exchange formats

    Enzyme Scaffolds with Hierarchically Defined Properties via 3D Jet Writing

    Get PDF
    The immobilization of enzymes into polymer hydrogels is a versatile approach to improve their stability and utility in biotechnological and biomedical applications. However, these systems typically show limited enzyme activity, due to unfavorable pore dimensions and low enzyme accessibility. Here, 3D jet writing of water‐based bioinks, which contain preloaded enzymes, is used to prepare hydrogel scaffolds with well‐defined, tessellated micropores. After 3D jet writing, the scaffolds are chemically modified via photopolymerization to ensure mechanical stability. Enzyme loading and activity in the hydrogel scaffolds is fully retained over 3 d. Important structural parameters of the scaffolds such as pore size, pore geometry, and wall diameter are controlled with micrometer resolution to avoid mass‐transport limitations. It is demonstrated that scaffold pore sizes between 120 µm and 1 mm can be created by 3D jet writing approaching the length scales of free diffusion in the hydrogels substrates and resulting in high levels of enzyme activity (21.2% activity relative to free enzyme). With further work, a broad range of applications for enzyme‐laden hydrogel scaffolds including diagnostics and enzymatic cascade reactions is anticipated.In this article, the development and application of a water‐based bioink with preloaded enzymes is described. With 3D jet writing, a hydrodynamic jetting system, freestanding 3D hydrogel frameworks with defined micropores are brightened. The enzyme‐loaded scaffolds show a high enzymatic activity and can be tested for industrial use in a continuous flow reactor over several days.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162721/2/mabi202000154_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162721/1/mabi202000154.pd

    Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation

    Get PDF
    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application

    On the reproducibility of extrusion-based bioprinting: round robin study on standardization in the field

    Get PDF
    The outcome of three-dimensional (3D) bioprinting heavily depends, amongst others, on the interaction between the developed bioink, the printing process, and the printing equipment. However, if this interplay is ensured, bioprinting promises unmatched possibilities in the health care area. To pave the way for comparing newly developed biomaterials, clinical studies, and medical applications (i.e. printed organs, patient-specific tissues), there is a great need for standardization of manufacturing methods in order to enable technology transfers. Despite the importance of such standardization, there is currently a tremendous lack of empirical data that examines the reproducibility and robustness of production in more than one location at a time. In this work, we present data derived from a round robin test for extrusion-based 3D printing performance comprising 12 different academic laboratories throughout Germany and analyze the respective prints using automated image analysis (IA) in three independent academic groups. The fabrication of objects from polymer solutions was standardized as much as currently possible to allow studying the comparability of results from different laboratories. This study has led to the conclusion that current standardization conditions still leave room for the intervention of operators due to missing automation of the equipment. This affects significantly the reproducibility and comparability of bioprinting experiments in multiple laboratories. Nevertheless, automated IA proved to be a suitable methodology for quality assurance as three independently developed workflows achieved similar results. Moreover, the extracted data describing geometric features showed how the function of printers affects the quality of the printed object. A significant step toward standardization of the process was made as an infrastructure for distribution of material and methods, as well as for data transfer and storage was successfully established

    On the reproducibility of extrusion-based bioprinting: round robin study on standardization in the field

    Get PDF
    The outcome of three-dimensional (3D) bioprinting heavily depends, amongst others, on the interaction between the developed bioink, the printing process, and the printing equipment. However, if this interplay is ensured, bioprinting promises unmatched possibilities in the health care area. To pave the way for comparing newly developed biomaterials, clinical studies, and medical applications (i.e. printed organs, patient-specific tissues), there is a great need for standardization of manufacturing methods in order to enable technology transfers. Despite the importance of such standardization, there is currently a tremendous lack of empirical data that examines the reproducibility and robustness of production in more than one location at a time. In this work, we present data derived from a round robin test for extrusion-based 3D printing performance comprising 12 different academic laboratories throughout Germany and analyze the respective prints using automated image analysis (IA) in three independent academic groups. The fabrication of objects from polymer solutions was standardized as much as currently possible to allow studying the comparability of results from different laboratories. This study has led to the conclusion that current standardization conditions still leave room for the intervention of operators due to missing automation of the equipment. This affects significantly the reproducibility and comparability of bioprinting experiments in multiple laboratories. Nevertheless, automated IA proved to be a suitable methodology for quality assurance as three independently developed workflows achieved similar results. Moreover, the extracted data describing geometric features showed how the function of printers affects the quality of the printed object. A significant step toward standardization of the process was made as an infrastructure for distribution of material and methods, as well as for data transfer and storage was successfully established

    Magnetic Resonance Imaging: Time-Dependent Wetting and Swelling Behavior of an Auxetic Hydrogel Based on Natural Polymers

    No full text
    A time-dependent understanding of swelling characteristics and external stimuli behavior is crucial for the development and understanding of functional hydrogels. Magnetic resonance imaging (MRI) offers the opportunity to study three-dimensional (3D) soft materials nondestructively. This technique is already widely used as an image-based medical diagnostic tool and is applied here to evaluate complex structures of a hydrogel—a double network of chemically crosslinked casein enhanced with alginate—fabricated by 3D printing. When hydrogel disks immersed in four different liquid systems were analyzed, the material exhibited distinct system-dependent behavior characterized by rheological and mechanical measurements. Further material functionalization was achieved by macroscopic structuring of the hydrogel as an auxetic material based on a re-entrant honeycomb structure. MRI offers the advantage of monitoring overall changes in the area of the analyzed specimen and internal structural changes simultaneously. To assess the behavior of this complex structure, a series of short MRI measurements, each lasting 1.7 min, captured liquid diffusion and thus structural swelling behavior. A clear dependence of external and internal structural changes as a function of liquid properties causing these changes was observed. In conclusion, this approach might pave the way for prospective applications to monitor liquid diffusion into (e.g., vascularization) and swelling behavior of functional hydrogels
    corecore