103 research outputs found

    TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    Get PDF
    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions

    A reach-out system for video microscopy analysis of ciliary motions aiding PCD diagnosis

    Get PDF
    Backgrounds High-speed Video-Microscopy Analysis (HVMA) is now being used to aid diagnosis of Primary Ciliary Dyskinesia (PCD). Only a few centers however, are equipped with the available resources and equipment to perform these tests. We describe our experience in HVMA reaching-out to many more peripheral and relatively remote areas. A portable computer with HVMA software, video camera and a microscope were used. Fourteen disperse pediatric centers were reached and a total of 203 subjects were tested within a relatively short time (Clinical Trial Registration: NCT 01070914 (registered February 6, 2010). Results With an average time of 20 minutes per patient, the system enabled us to test approximately 10–15 subjects per day. A valid HVMA result was made in 148 subjects and helped in the diagnosis of PCD in many of the patients who were subsequently confirmed to have PCD by electron microscopy and/or immunofluoresence and/or genetics and/or nasal Nitric Oxide testing. The sensitivity of abnormal HVMA to accurately predict PCD was 90.2%. Discussion and conclusion This is the first report of an out-reach system to record HVMA for improved diagnosis of PCD in remote regions that are not within reach of PCD centers and experts. It provides immediate preliminary results and instantaneous feedback to the physician, patient and his/her family members in these areas. Future studies to compare this system to conventional desk top systems are warranted

    Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling

    Get PDF
    Mutations of NPHS1 or NPHS2, the genes encoding nephrin and podocin, as well as the targeted disruption of CD2-associated protein (CD2AP), lead to heavy proteinuria, suggesting that all three proteins are essential for the integrity of glomerular podocytes, the visceral glomerular epithelial cells of the kidney. It has been speculated that these proteins participate in common signaling pathways; however, it has remained unclear which signaling proteins are actually recruited by the slit diaphragm protein complex in vivo. We demonstrate that both nephrin and CD2AP interact with the p85 regulatory subunit of phosphoinositide 3-OH kinase (PI3K) in vivo, recruit PI3K to the plasma membrane, and, together with podocin, stimulate PI3K-dependent AKT signaling in podocytes. Using two-dimensional gel analysis in combination with a phosphoserine-specific antiserum, we demonstrate that the nephrin-induced AKT mediates phosphorylation of several target proteins in podocytes. One such target is Bad; its phosphorylation and inactivation by 14-3-3 protects podocytes against detachment-induced cell death, suggesting that the nephrin-CD2AP-mediated AKT activity can regulate complex biological programs. Our findings reveal a novel role for the slit diaphragm proteins nephrin, CD2AP, and podocin and demonstrate that these three proteins, in addition to their structural functions, initiate PI3K/AKT-dependent signal transduction in glomerular podocytes

    A founder CEP120 mutation in Jeune asphyxiating thoracic dystrophy expands the role of centriolar proteins in skeletal ciliopathies

    Get PDF
    Jeune asphyxiating thoracic dystrophy (JATD) is a skeletal dysplasia characterized by a small thoracic cage and a range of skeletal and extra-skeletal anomalies. JATD is genetically heterogeneous with at least nine genes identified, all encoding ciliary proteins, hence the classification of JATD as a skeletal ciliopathy. Consistent with the observation that the heterogeneous molecular basis of JATD has not been fully determined yet, we have identified two consanguineous Saudi families segregating JATD who share a single identical ancestral homozygous haplotype among the affected members. Whole-exome sequencing revealed a single novel variant within the disease haplotype in CEP120, which encodes a core centriolar protein. Subsequent targeted sequencing of CEP120 in Saudi and European JATD cohorts identified two additional families with the same missense mutation. Combining the four families in linkage analysis confirmed a significant genome-wide linkage signal at the CEP120 locus. This missense change alters a highly conserved amino acid within CEP120 (p.Ala199Pro). In addition, we show marked reduction of cilia and abnormal number of centrioles in fibroblasts from one affected individual. Inhibition of the CEP120 ortholog in zebrafish produced pleiotropic phenotypes characteristic of cilia defects including abnormal body curvature, hydrocephalus, otolith defects and abnormal renal, head and craniofacial development. We also demonstrate that in CEP120 morphants, cilia are shortened in the neural tube and disorganized in the pronephros. These results are consistent with aberrant CEP120 being implicated in the pathogenesis of JATD and expand the role of centriolar proteins in skeletal ciliopathie

    Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm

    Get PDF
    Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous ciliopathy disorder affecting cilia and sperm motility. A range of ultrastructural defects of the axoneme underlie the disease, which is characterised by chronic respiratory symptoms and obstructive lung disease, infertility and body axis laterality defects. We applied a next-generation sequencing approach to identify the gene responsible for this phenotype in two consanguineous families

    DYX1C1 is required for axonemal dynein assembly and ciliary motility

    Get PDF
    Dyx1c1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deletion of Dyx1c1 exons 2–4 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder characterized by chronic airway disease, laterality defects, and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1c.T2A start codon mutation recovered from an ENU mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also created laterality and ciliary motility defects. In humans, recessive loss-of-function DYX1C1 mutations were identified in twelve PCD individuals. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans revealed disruptions of outer and inner dynein arms (ODA/IDA). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA/IDA assembly factor DNAAF2/KTU. Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4)

    Rare genetic variants affecting urine metabolite levels link population variation to inborn errors of metabolism

    Get PDF
    Metabolite levels in urine may provide insights into genetic mechanisms shaping their related pathways. We therefore investigate the cumulative contribution of rare, exonic genetic variants on urine levels of 1487 metabolites and 53,714 metabolite ratios among 4864 GCKD study participants. Here we report the detection of 128 significant associations involving 30 unique genes, 16 of which are known to underlie inborn errors of metabolism. The 30 genes are strongly enriched for shared expression in liver and kidney (odds ratio = 65, p-FDR = 3e-7), with hepatocytes and proximal tubule cells as driving cell types. Use of UK Biobank whole-exome sequencing data links genes to diseases connected to the identified metabolites. In silico constraint-based modeling of gene knockouts in a virtual whole-body, organ-resolved metabolic human correctly predicts the observed direction of metabolite changes, highlighting the potential of linking population genetics to modeling. Our study implicates candidate variants and genes for inborn errors of metabolis

    IFT74 variants cause skeletal ciliopathy and motile cilia defects in mice and humans

    Get PDF
    Motile and non-motile cilia play critical roles in mammalian development and health. These organelles are composed of a 1000 or more unique proteins, but their assembly depends entirely on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). In mammals, malfunction of non-motile cilia due to IFT dysfunction results in complex developmental phenotypes that affect most organs. In contrast, disruption of motile cilia function causes subfertility, disruption of the left-right body axis, and recurrent airway infections with progressive lung damage. In this work, we characterize allele specific phenotypes resulting from IFT74 dysfunction in human and mice. We identified two families carrying a deletion encompassing IFT74 exon 2, the first coding exon, resulting in a protein lacking the first 40 amino acids and two individuals carrying biallelic splice site mutations. Homozygous exon 2 deletion cases presented a ciliary chondrodysplasia with narrow thorax and progressive growth retardation along with a mucociliary clearance disorder phenotype with severely shorted cilia. Splice site variants resulted in a lethal skeletal chondrodysplasia phenotype. In mice, removal of the first 40 amino acids likewise results in a motile cilia phenotype but with little effect on primary cilia structure. Mice carrying this allele are born alive but are growth restricted and developed hydrocephaly in the first month of life. In contrast, a strong, likely null, allele of Ift74 in mouse completely blocks ciliary assembly and causes severe heart defects and midgestational lethality. In vitro studies suggest that the first 40 amino acids of IFT74 are dispensable for binding of other IFT subunits but are important for tubulin binding. Higher demands on tubulin transport in motile cilia compared to primary cilia resulting from increased mechanical stress and repair needs could account for the motile cilia phenotype observed in human and mice

    IFT74 variants cause skeletal ciliopathy and motile cilia defects in mice and humans

    Get PDF
    Motile and non-motile cilia play critical roles in mammalian development and health. These organelles are composed of a 1000 or more unique proteins, but their assembly depends entirely on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). In mammals, malfunction of non-motile cilia due to IFT dysfunction results in complex developmental phenotypes that affect most organs. In contrast, disruption of motile cilia function causes subfertility, disruption of the left-right body axis, and recurrent airway infections with progressive lung damage. In this work, we characterize allele specific phenotypes resulting from IFT74 dysfunction in human and mice. We identified two families carrying a deletion encompassing IFT74 exon 2, the first coding exon, resulting in a protein lacking the first 40 amino acids and two individuals carrying biallelic splice site mutations. Homozygous exon 2 deletion cases presented a ciliary chondrodysplasia with narrow thorax and progressive growth retardation along with a mucociliary clearance disorder phenotype with severely shorted cilia. Splice site variants resulted in a lethal skeletal chondrodysplasia phenotype. In mice, removal of the first 40 amino acids likewise results in a motile cilia phenotype but with little effect on primary cilia structure. Mice carrying this allele are born alive but are growth restricted and developed hydrocephaly in the first month of life. In contrast, a strong, likely null, allele of Ift74 in mouse completely blocks ciliary assembly and causes severe heart defects and midgestational lethality. In vitro studies suggest that the first 40 amino acids of IFT74 are dispensable for binding of other IFT subunits but are important for tubulin binding. Higher demands on tubulin transport in motile cilia compared to primary cilia resulting from increased mechanical stress and repair needs could account for the motile cilia phenotype observed in human and mice
    corecore