3,788 research outputs found

    The Structure of Operators in Effective Particle-Conserving Models

    Full text link
    For many-particle systems defined on lattices we investigate the global structure of effective Hamiltonians and observables obtained by means of a suitable basis transformation. We study transformations which lead to effective Hamiltonians conserving the number of excitations. The same transformation must be used to obtain effective observables. The analysis of the structure shows that effective operators give rise to a simple and intuitive perspective on the initial problem. The systematic calculation of n-particle irreducible quantities becomes possible constituting a significant progress. Details how to implement the approach perturbatively for a large class of systems are presented.Comment: 12 pages, 1 figure, accepted by J. Phys. A: Math. Ge

    Dynamics of Magnetic Flux Elements in the Solar Photosphere

    Get PDF
    The interaction of magnetic fields and convection is investigated in the context of the coronal heating problem. We study the motions of photospheric magnetic elements using filtergrams obtained at the Swedish Vacuum Solar Telescope at La Palma. We use potential-field modeling to extrapolate the magnetic and velocity fields to larger height. We find that the velocity in the chromosphere can be locally enhanced at the separatrix surfaces between neighboring flux tubes. The predicted velocities are several km/s, significantly larger than those of the photospheric flux tubes, which may have important implications for coronal heating. sComment: submitted to ApJ, 21 pages, 10 figure

    Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides

    Full text link
    Ballistic spin transport through waveguides, with symmetric or asymmetric double stubs attached to them periodically, is studied systematically in the presence of a weak spin-orbit coupling that makes the electrons precess. By an appropriate choice of the waveguide length and of the stub parameters injected spin-polarized electrons can be blocked completely and the transmission shows a periodic and nearly square-type behavior, with values 1 and 0, with wide gaps when only one mode is allowed to propagate in the waveguide. A similar behavior is possible for a certain range of the stub parameters even when two-modes can propagate in the waveguide and the conductance is doubled. Such a structure is a good candidate for establishing a realistic spin transistor. A further modulation of the spin current can be achieved by inserting defects in a finite-number stub superlattice. Finite-temperature effects on the spin conductance are also considered.Comment: 19 pages, 8 figure

    Four-particle condensate in strongly coupled fermion systems

    Full text link
    Four-particle correlations in fermion systems at finite temperatures are investigated with special attention to the formation of a condensate. Instead of the instability of the normal state with respect to the onset of pairing described by the Gorkov equation, a new equation is obtained which describes the onset of quartetting. Within a model calculation for symmetric nuclear matter, we find that below a critical density, the four-particle condensation (alpha-like quartetting) is favored over deuteron condensation (triplet pairing). This pairing-quartetting competition is expected to be a general feature of interacting fermion systems, such as the excition-biexciton system in excited semiconductors. Possible experimental consequences are pointed out.Comment: LaTeX, 11 pages, 2 figures, uses psfig.sty (included), to be published in Phys. Rev. Lett., tentatively scheduled for 13 April 1998 (Volume 80, Number 15

    Strong-coupling expansion and effective hamiltonians

    Full text link
    When looking for analytical approaches to treat frustrated quantum magnets, it is often very useful to start from a limit where the ground state is highly degenerate. This chapter discusses several ways of deriving {effective Hamiltonians} around such limits, starting from standard {degenerate perturbation theory} and proceeding to modern approaches more appropriate for the derivation of high-order effective Hamiltonians, such as the perturbative continuous unitary transformations or contractor renormalization. In the course of this exposition, a number of examples taken from the recent literature are discussed, including frustrated ladders and other dimer-based Heisenberg models in a field, as well as the mapping between frustrated Ising models in a transverse field and quantum dimer models.Comment: To appear as a chapter in "Highly Frustrated Magnetism", Eds. C. Lacroix, P. Mendels, F. Mil

    High Resolution Observations using Adaptive Optics: Achievements and Future Needs

    Full text link
    Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solar AO are enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5m are expected during the next decade, there is a need to develop the existing AO technologies for large aperture telescopes. Some aspects of this development are highlighted. Finally, the recent AO developments in India are also presented

    Development of the EORTC QLQ-CAX24, a questionnaire for cancer patients with cachexia

    Get PDF
    Context Cachexia is commonly found in cancer patients and has profound consequences; yet there is only one questionnaire that examines the patient's perspective. Objective To report a rigorously developed module for patient self-reported impact of cancer cachexia. Methods Module development followed published guidelines. Patients from across the cancer cachexia trajectory were included. In Phase 1, health-related quality of life (HRQOL) issues were generated from a literature review and interviews with patients in four countries. The issues were revised based on patient and health care professional (HCP) input. In Phase 2, questionnaire items were formulated and translated into the languages required for Phase 3, the pilot phase, in which patients from eight countries scored the relevance and importance of each item, and provided qualitative feedback. Results A total of 39 patients and 12 HCPs took part in Phase 1. The literature review produced 68 HRQOL issues, with 22 new issues arising from the patient interviews. After patient and HCP input, 44 issues were formulated into questionnaire items in Phase 2. One hundred ten patients took part in Phase 3. One item was reworded, and 20 items were deleted as a consequence of patient feedback. Conclusions The QLQ-CAX24 is a cancer cachexia-specific questionnaire, comprising 24 items, for HRQOL assessment in clinical trials and practice. It contains five multi-item scales (food aversion, eating and weight-loss worry, eating difficulties, loss of control, and physical decline) and four single items

    First-Principles Calculations of Hyperfine Interactions in La_2CuO_4

    Full text link
    We present the results of first-principles cluster calculations of the electronic structure of La_2CuO_4. Several clusters containing up to nine copper atoms embedded in a background potential were investigated. Spin-polarized calculations were performed both at the Hartree-Fock level and with density functional methods with generalized gradient corrections to the local density approximation. The distinct results for the electronic structure obtained with these two methods are discussed. The dependence of the electric-field gradients at the Cu and the O sites on the cluster size is studied and the results are compared to experiments. The magnetic hyperfine coupling parameters are carefully examined. Special attention is given to a quantitative determination of on-site and transferred hyperfine fields. We provide a detailed analysis that compares the hyperfine fields obtained for various cluster sizes with results from additional calculations of spin states with different multiplicities. From this we conclude that hyperfine couplings are mainly transferred from nearest neighbor Cu^{2+} ions and that contributions from further distant neighbors are marginal. The mechanisms giving rise to transfer of spin density are worked out. Assuming conventional values for the spin-orbit coupling, the total calculated hyperfine interaction parameters are compared to informations from experiments.Comment: 23 pages, 9 figure

    The Nucleon Spectral Function at Finite Temperature and the Onset of Superfluidity in Nuclear Matter

    Get PDF
    Nucleon selfenergies and spectral functions are calculated at the saturation density of symmetric nuclear matter at finite temperatures. In particular, the behaviour of these quantities at temperatures above and close to the critical temperature for the superfluid phase transition in nuclear matter is discussed. It is shown how the singularity in the thermodynamic T-matrix at the critical temperature for superfluidity (Thouless criterion) reflects in the selfenergy and correspondingly in the spectral function. The real part of the on-shell selfenergy (optical potential) shows an anomalous behaviour for momenta near the Fermi momentum and temperatures close to the critical temperature related to the pairing singularity in the imaginary part. For comparison the selfenergy derived from the K-matrix of Brueckner theory is also calculated. It is found, that there is no pairing singularity in the imaginary part of the selfenergy in this case, which is due to the neglect of hole-hole scattering in the K-matrix. From the selfenergy the spectral function and the occupation numbers for finite temperatures are calculated.Comment: LaTex, 23 pages, 21 PostScript figures included (uuencoded), uses prc.sty, aps.sty, revtex.sty, psfig.sty (last included
    corecore