8 research outputs found

    Systematic mapping of free energy landscapes of a growing filamin domain during biosynthesis

    Get PDF
    Cotranslational folding (CTF) is a fundamental molecular process that ensures efficient protein biosynthesis and minimizes the formation of misfolded states. However, the complexity of this process makes it extremely challenging to obtain structural characterizations of CTF pathways. Here, we correlate observations of translationally arrested nascent chains with those of a systematic C-terminal truncation strategy. We create a detailed description of chain length-dependent free energy landscapes associated with folding of the FLN5 filamin domain, in isolation and on the ribosome, and thus, quantify a substantial destabilization of the native structure on the ribosome. We identify and characterize two folding intermediates formed in isolation, including a partially folded intermediate associated with the isomerization of a conserved cis proline residue. The slow folding associated with this process raises the prospect that neighboring unfolded domains might accumulate and misfold during biosynthesis. We develop a simple model to quantify the risk of misfolding in this situation and show that catalysis of folding by peptidyl-prolyl isomerases is sufficient to eliminate this hazard. [Abstract copyright: Copyright © 2018 the Author(s). Published by PNAS.

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    Vibrational Lifetime of the SCN Protein Label in H2O and D2O Reports Site-Specific Solvation and Structure Changes during PYP's Photocycle

    No full text
    © 2019 American Chemical Society.The application of vibrational labels such as thiocyanate »(-S-CN) for studying protein structure and dynamics is thriving. Absorption spectroscopy is usually employed to obtain wavenumber and line shape of the label. An observable of great significance might be the vibrational lifetime, which can be obtained by pump probe or 2D-IR spectroscopy. Due to the insulating effect of the heavy sulfur atom in the case of the SCN label, the lifetime of the CN oscillator is expected to be particularly sensitive to its surrounding as it is not dominated by through-bond relaxation. We therefore investigate the vibrational lifetime of the SCN label at various positions in the blue light sensor protein Photoactive Yellow Protein (PYP) in the ground state and signaling state of the photoreceptor. We find that the vibrational lifetime of the CN stretching mode is strongly affected both by its protein environment and by the degree of exposure to the solvent. Even for label positions where the line shape and wavenumber observed by FTIR are barely changing upon activation of the photoreceptor, we find that the lifetime can change considerably. To obtain an unambiguous measure for the solvent exposure of the labeled site, we show that it is imperative to compare the lifetimes in H2O and D2O. Importantly, the lifetimes shorten in H2O as compared to D2O for water exposed labels, while they stay largely the same for buried labels. We quantify this effect by defining a solvent exclusion coefficient (SEC). The response of the label's vibrational lifetime to its solvent exposure renders it a suitable universal probe for protein investigations. This applies even to systems that are otherwise hard to address, such as transient or short-lived states, which could be created during a protein's working cycle (as here in PYP) or during protein folding. It is also applicable to flexible systems (intrinsically disordered proteins), protein-protein and protein-membrane interaction

    11th German Conference on Chemoinformatics (GCC 2015)

    No full text

    [The effect of low-dose hydrocortisone on requirement of norepinephrine and lactate clearance in patients with refractory septic shock].

    No full text

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore