29,617 research outputs found

    The Two-Loop Euler-Heisenberg Lagrangian in Dimensional Renormalization

    Full text link
    We clarify a discrepancy between two previous calculations of the two-loop QED Euler-Heisenberg Lagrangian, both performed in proper-time regularization, by calculating this quantity in dimensional regularization.Comment: 12 pages, standard Latex, no figures, uses a4wide.st

    An Exact Monte Carlo Method for Continuum Fermion Systems

    Full text link
    We offer a new proposal for the Monte Carlo treatment of many-fermion systems in continuous space. It is based upon Diffusion Monte Carlo with significant modifications: correlated pairs of random walkers that carry opposite signs; different functions ``guide'' walkers of different signs; the Gaussians used for members of a pair are correlated; walkers can cancel so as to conserve their expected future contributions. We report results for free-fermion systems and a fermion fluid with 14 3^3He atoms, where it proves stable and correct. Its computational complexity grows with particle number, but slowly enough to make interesting physics within reach of contemporary computers.Comment: latex source, 3 separated figures (2 in jpg format, 1 in eps format

    Multiloop Calculations in the String-Inspired Formalism: The Single Spinor-Loop in QED

    Get PDF
    We use the worldline path-integral approach to the Bern-Kosower formalism for developing a new algorithm for calculation of the sum of all diagrams with one spinor loop and fixed numbers of external and internal photons. The method is based on worldline supersymmetry, and on the construction of generalized worldline Green functions. The two-loop QED β\beta -- function is calculated as an example.Comment: uuencoded ps-file, 20 pages, 2 figures, final revised version to appear in Phys. Rev.

    Dielectronic Recombination of Fe XV forming Fe XIV: Laboratory Measurements and Theoretical Calculations

    Get PDF
    We have measured resonance strengths and energies for dielectronic recombination (DR) of Mg-like Fe XV forming Al-like Fe XIV via N=3 -> N' = 3 core excitations in the electron-ion collision energy range 0-45 eV. All measurements were carried out using the heavy-ion Test Storage Ring at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We have also carried out new multiconfiguration Breit-Pauli (MCBP) calculations using the AUTOSTRUCTURE code. For electron-ion collision energies < 25 eV we find poor agreement between our experimental and theoretical resonance energies and strengths. From 25 to 42 eV we find good agreement between the two for resonance energies. But in this energy range the theoretical resonance strengths are ~ 31% larger than the experimental results. This is larger than our estimated total experimental uncertainty in this energy range of +/- 26% (at a 90% confidence level). Above 42 eV the difference in the shape between the calculated and measured 3s3p(^1P_1)nl DR series limit we attribute partly to the nl dependence of the detection probabilities of high Rydberg states in the experiment. We have used our measurements, supplemented by our AUTOSTRUCTURE calculations, to produce a Maxwellian-averaged 3 -> 3 DR rate coefficient for Fe XV forming Fe XIV. The resulting rate coefficient is estimated to be accurate to better than +/- 29% (at a 90% confidence level) for k_BT_e > 1 eV. At temperatures of k_BT_e ~ 2.5-15 eV, where Fe XV is predicted to form in photoionized plasmas, significant discrepancies are found between our experimentally-derived rate coefficient and previously published theoretical results. Our new MCBP plasma rate coefficient is 19-28% smaller than our experimental results over this temperature range

    Photon Splitting in a Strong Magnetic Field: Recalculation and Comparison With Previous Calculations

    Get PDF
    We recalculate the amplitude for photon splitting in a strong magnetic field below the pair production threshold, using the worldline path integral variant of the Bern--Kosower formalism. Numerical comparison (using programs that we have made available for public access on the Internet) shows that the results of the recalculation are identical to the earlier calculations of Adler and later of Stoneham, and to the recent recalculation by Baier, Milstein, and Shaisultanov.Comment: Revtex, 9 pages, no figure

    Experimental study of 199Hg spin anti-relaxation coatings

    Full text link
    We report on a comparison of spin relaxation rates in a 199^{199}Hg magnetometer using different wall coatings. A compact mercury magnetometer was built for this purpose. Glass cells coated with fluorinated materials show longer spin coherence times than if coated with their hydrogenated homologues. The longest spin relaxation time of the mercury vapor was measured with a fluorinated paraffin wall coating.Comment: 9 pages, 6 figures, submitted to JINS

    Measuring the saturation scale in nuclei

    Full text link
    The saturation momentum seeing in the nuclear infinite momentum frame is directly related to transverse momentum broadening of partons propagating through the medium in the nuclear rest frame. Calculation of broadening within the color dipole approach including the effects of saturation in the nucleus, gives rise to an equation which describes well data on broadening in Drell-Yan reaction and heavy quarkonium production.Comment: 11 pages, 5 figures, based on the talk presented by B.K. at the INT workshop "Physics at a High Energy Electron Ion Collider", Seattle, October 200

    Higgs production with large transverse momentum in hadronic collisions at next-to-leading order

    Get PDF
    Inclusive associated production of a light Higgs boson (m_H < m_t) with one jet in pp collisions is studied in next-to-leading order QCD. Transverse momentum (p_T < 30 GeV) and rapidity distributions of the Higgs boson are calculated for the LHC in the large top-quark mass limit. It is pointed out that, as much as in the case of inclusive Higgs production, the K-factor of this process is large (~1.6) and depends weakly on the kinematics in a wide range of transverse momentum and rapidity intervals. Our result confirms previous suggestions that the production channel p+p -> H+jet -> gamma+gamma+jet gives a measurable signal for Higgs production at the LHC in the mass range 100-140 GeV, crucial also for the ultimate test of the Minimal Supersymmetric Standard Model.Comment: 7 pages, 3 eps figures include
    • …
    corecore