23,863 research outputs found

    Diophantine approximation on Veech surfaces

    Get PDF
    We show that Y. Cheung's general ZZ-continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates. The saddle connection continued fractions then allow one to recognize certain transcendental directions by their developments

    Commensurable continued fractions

    Full text link
    We compare two families of continued fractions algorithms, the symmetrized Rosen algorithm and the Veech algorithm. Each of these algorithms expands real numbers in terms of certain algebraic integers. We give explicit models of the natural extension of the maps associated with these algorithms; prove that these natural extensions are in fact conjugate to the first return map of the geodesic flow on a related surface; and, deduce that, up to a conjugacy, almost every real number has an infinite number of common approximants for both algorithms.Comment: 41 pages, 10 figure

    Veech surfaces with non-periodic directions in the trace field

    Full text link
    We show that each of Veech's original examples of translation surfaces with ``optimal dynamics'' whose trace field is of degree greater than two has non-periodic directions of vanishing SAF-invariant. Furthermore, we give explicit examples of pseudo-Anosov diffeomorphisms whose contracting direction has zero SAF-invariant.Comment: 22 pages, 1 figur

    Tong's spectrum for Rosen continued fractions

    Get PDF
    The Rosen fractions are an infinite set of continued fraction algorithms, each giving expansions of real numbers in terms of certain algebraic integers. For each, we give a best possible upper bound for the minimum in appropriate consecutive blocks of approximation coefficients (in the sense of Diophantine approximation by continued fraction convergents). We also obtain metrical results for large blocks of ``bad'' approximations.Comment: 22 pages, 5 figure
    • …
    corecore