78,995 research outputs found

    Nonlinear transport through a dynamic impurity in a strongly interacting one-dimensional electron gas

    Full text link
    We analyze the transport properties of a Luttinger liquid with an imbedded impurity of explicitly time-dependent strength. We employ a radiative boundary condition formalism to describe the coupling to the voltage sources. Assuming the impurity time dependence to be oscillatory we present a full analytic perturbative result in impurity strength for arbitrary interaction parameter calculated with help of Coulomb gas expansion (CGE). Moreover, a full analytic solution beyond the above restriction is possible for a special non-trivial interaction strength which has been achieved independently by full resummation of CGE series as well as via refermionization technique. The resulting nonlinear current-voltage characteristic turns out to be very rich due to the presence of the additional energy scale associated with the impurity oscillation frequency. In accordance with the previous studies we also find an enhancement of the linear conductance of the wire to values above the unitary limit G0 = 2e2/h.Comment: 8 pages, 3 figures, submitted to PR

    The light-cone gauge without prescriptions

    Full text link
    Feynman integrals in the physical light-cone gauge are harder to solve than their covariant counterparts. The difficulty is associated with the presence of unphysical singularities due to the inherent residual gauge freedom in the intermediate boson propagators constrained within this gauge choice. In order to circumvent these non-physical singularities, the headlong approach has always been to call for mathematical devices --- prescriptions --- some successful ones and others not so much so. A more elegant approach is to consider the propagator from its physical point of view, that is, an object obeying basic principles such as causality. Once this fact is realized and carefully taken into account, the crutch of prescriptions can be avoided altogether. An alternative third approach, which for practical computations could dispense with prescriptions as well as prescinding the necessity of careful stepwise watching out of causality would be of great advantage. And this third option is realizable within the context of negative dimensions, or as it has been coined, negative dimensional integration method, NDIM for short.Comment: 9 pages, PTPTeX (included

    Feynman integrals with tensorial structure in the negative dimensional integration scheme

    Get PDF
    Negative dimensional integration method (NDIM) is revealing itself as a very useful technique for computing Feynman integrals, massless and/or massive, covariant and non-covariant alike. Up to now, however, the illustrative calculations done using such method are mostly covariant scalar integrals, without numerator factors. Here we show how those integrals with tensorial structures can also be handled with easiness and in a straightforward manner. However, contrary to the absence of significant features in the usual approach, here the NDIM also allows us to come across surprising unsuspected bonuses. In this line, we present two alternative ways of working out the integrals and illustrate them by taking the easiest Feynman integrals in this category that emerges in the computation of a standard one-loop self-energy diagram. One of the novel and as yet unsuspected bonus is that there are degeneracies in the way one can express the final result for the referred Feynman integral.Comment: 9 pages, revtex, no figure

    Negative dimensional approach for scalar two-loop three-point and three-loop two-point integrals

    Get PDF
    The well-known DD-dimensional Feynman integrals were shown, by Halliday and Ricotta, to be capable of undergoing analytic continuation into the domain of negative values for the dimension of space-time. Furthermore, this could be identified with Grassmannian integration in positive dimensions. From this possibility follows the concept of negative dimensional integration for loop integrals in field theories. Using this technique, we evaluate three two-loop three-point scalar integrals, with five and six massless propagators, with specific external kinematic configurations (two legs on-shell), and four three-loop two-point scalar integrals. These results are given for arbitrary exponents of propagators and dimension, in Euclidean space, and the particular cases compared to results published in the literature.Comment: 6 pages, 7 figures, Revte

    Automatic design of optical systems by digital computer

    Get PDF
    Computer program uses geometrical optical techniques and a least squares optimization method employing computing equipment for the automatic design of optical systems. It evaluates changes in various optical parameters, provides comprehensive ray-tracing, and generally determines the acceptability of the optical system characteristics

    Full counting statistics of spin transfer through ultrasmall quantum dots

    Full text link
    We analyze the spin-resolved full counting statistics of electron transfer through an ultrasmall quantum dot coupled to metallic electrodes. Modelling the setup by the Anderson Hamiltonian, we explicitly take into account the onsite Coulomb repulsion UU. We calculate the cumulant generating function for the probability to transfer a certain number of electrons with a preselected spin orientation during a fixed time interval. With the cumulant generating function at hand we are then able to calculate the spin current correlations which are of outmost importance in the emerging field of spintronics. We confirm the existing results for the charge statistics and report the discovery of the new type of correlation between the spin-up and -down polarized electrons flows, which has a potential to become a powerful new instrument for the investigation of the Kondo effect in nanostructures.Comment: 5 pages, 1 figur

    Charge transfer statistics of a molecular quantum dot with strong electron-phonon interaction

    Full text link
    We analyze the nonequilibrium transport properties of a quantum dot with a harmonic degree of freedom (Holstein phonon) coupled to metallic leads, and derive its full counting statistics (FCS). Using the Lang-Firsov (polaron) transformation, we construct a diagrammatic scheme to calculate the cumulant generating function. The electron-phonon interaction is taken into account exactly, and the employed approximation represents a summation of a diagram subset with respect to the tunneling amplitude. By comparison to Monte Carlo data the formalism is shown to capture the basic properties of the strong coupling regime

    Interactive aircraft flight control and aeroelastic stabilization

    Get PDF
    Several examples are presented in which flutter involving interaction between flight mechanics modes and elastic wind bending occurs for a forward swept wing flight vehicle. These results show the basic mechanism by which the instability occurs and form the basis for attempts to actively control such a vehicle

    Dynamics and control of forward swept wing aircraft

    Get PDF
    Aspects of non-zero differential game theory with application to multivariable control synthesis and optimal linear control law design using optimum parameter sensitivity analysis are discussed

    Massless and massive one-loop three-point functions in negative dimensional approach

    Full text link
    In this article we present the complete massless and massive one-loop triangle diagram results using the negative dimensional integration method (NDIM). We consider the following cases: massless internal fields; one massive, two massive with the same mass m and three equal masses for the virtual particles. Our results are given in terms of hypergeometric and hypergeometric-type functions of external momenta (and masses for the massive cases) where the propagators in the Feynman integrals are raised to arbitrary exponents and the dimension of the space-time D. Our approach reproduces the known results as well as other solutions as yet unknown in the literature. These new solutions occur naturally in the context of NDIM revealing a promising technique to solve Feynman integrals in quantum field theories
    corecore