6,346 research outputs found

    Development of battery separator composites

    Get PDF
    Improved inorganic-organic separators developed by NASA were commercially prepared. A single-ply asbestos substrate was developed, as well as alternative substrates based on cellulose and on polypropylene fibers. The single-ply asbestos was bound with butyl rubber and was functionally superior to the formerly used polyphenylene oxide saturated sheet. Commercially prepared separators exhibited better measured separator properties than the NASA standard. Cycle life in Ni/Zn and Ag/Zn cells was related to substrate, decreasing in the order; asbestos cellulose paper nonwoven polypropylene. The cycle life of solvent-coated separators was better than aqueous in Ni/Zn cells, while aqueous coatings were better in Ag/Zn cells

    Biplane Fluoroscopy for Hindfoot Motion Analysis during Gait: A Model-based Evaluation

    Get PDF
    The purpose of this study was to quantify the accuracy and precision of a biplane fluoroscopy system for model-based tracking of in vivo hindfoot motion during over-ground gait. Gait was simulated by manually manipulating a cadaver foot specimen through a biplane fluoroscopy system attached to a walkway. Three 1.6-mm diameter steel beads were implanted into the specimen to provide marker-based tracking measurements for comparison to model-based tracking. A CT scan was acquired to define a gold standard of implanted bead positions and to create 3D models for model-based tracking. Static and dynamic trials manipulating the specimen through the capture volume were performed. Marker-based tracking error was calculated relative to the gold standard implanted bead positions. The bias, precision, and root-mean-squared (RMS) error of model-based tracking was calculated relative to the marker-based measurements. The overall RMS error of the model-based tracking method averaged 0.43 ± 0.22 mm and 0.66 ± 0.43° for static and 0.59 ± 0.10 mm and 0.71 ± 0.12° for dynamic trials. The model-based tracking approach represents a non-invasive technique for accurately measuring dynamic hindfoot joint motion during in vivo, weight bearing conditions. The model-based tracking method is recommended for application on the basis of the study results

    Focusing a deterministic single-ion beam

    Full text link
    We focus down an ion beam consisting of single 40Ca+ ions to a spot size of a few mum using an einzel-lens. Starting from a segmented linear Paul trap, we have implemented a procedure which allows us to deterministically load a predetermined number of ions by using the potential shaping capabilities of our segmented ion trap. For single-ion loading, an efficiency of 96.7(7)% has been achieved. These ions are then deterministically extracted out of the trap and focused down to a 1sigma-spot radius of (4.6 \pm 1.3)mum at a distance of 257mm from the trap center. Compared to former measurements without ion optics, the einzel-lens is focusing down the single-ion beam by a factor of 12. Due to the small beam divergence and narrow velocity distribution of our ion source, chromatic and spherical aberration at the einzel-lens is vastly reduced, presenting a promising starting point for focusing single ions on their way to a substrate.Comment: 16 pages, 7 figure

    Weighing a galaxy bar in the lens Q2237+0305

    Get PDF
    In the gravitational lens system Q2237+0305 the cruciform quasar image geometry is twisted by ten degrees by the lens effect of a bar in the lensing galaxy. This effect can be used to measure the mass of the bar. We construct a new lensing model for this system with a power-law elliptical bulge and a Ferrers bar. The observed ellipticity of the optical isophotes of the galaxy leads to a nearly isothermal elliptical profile for the bulge with a total quasar magnification of 16^{+5}_{-4}. We measure a bar mass of 7.5\pm1.5 \times 10^8 h^{-1}_{75} M_{\sun} in the region inside the quasar images.Comment: 9 pages, 5 Postscript figures, uses mn.sty and eps.sty, submitted to MNRA

    Problems and Current Trends in Rock Magnetism and Paleomagnetism

    Get PDF
    Continental drift, seafloor spreading, plate tectonics: These terms conjure up a picture of the whole of Earth\u27s lithospheric plates in motion, a picture that truly represents a revolution in the earth sciences that took place in the 1960s and permanently changed our view of a more static world. If someone were to ask which subdiscipline of the geosciences has provided the crucial quantitative evidence about the past locations of discrete parts of continental and oceanic plates, the answer would be geomagnetism and paleomagnetism. Polarity stratigraphy, based on radiometrically dated 180° reversals of the dipolar geomagnetic field, informs us about the locations of parts of the seafloor in the past, and paleomagnetically determined paleolatitudes of continental rocks provide similar information about past locations of continental plates

    Combined macro- and micro-rheometer for use with Langmuir monolayers

    Get PDF
    A Langmuir monolayer trough that is equipped for simultaneous microrheology and standard rheology measurements has been constructed. The central elements are the trough itself with a full range of optical tools accessing the air-water interface from below the trough and a portable knife-edge torsion pendulum that can access the interface from above. The ability to simultaneously measure the mechanical response of Langmuir monolayers on very different lengths scales is an important step in for our understanding of the mechanical response of such systems

    How chromophore labels shape the structure and dynamics of a peptide hydrogel

    Full text link
    Biocompatible and functionalizable hydrogels have a wide range of (potential) medicinal applications. In contrast to conventional hydrogels formed by interconnected or interlocked polymer chains, self-assembled hydrogels form from small building blocks like short peptide chains. This has the advantage that the building blocks can be functionalized separately and then mixed to obtain the desired properties. However, the hydrogelation process for these systems, especially those with very low polymer weight percentage (< 1 wt%), is not well understood, and therefore it is hard to predict whether a given molecular building block will self-assemble into a hydrogel. This severely hinders the rational design of self-assembled hydrogels. In this study, we demonstrate the impact of an N-terminal chromophore label amino-benzoic acid on the self-assembly and rheology of hydrogel hFF03 (hydrogelating, fibril forming) using molecular dynamics simulations, which self-assembles into {\alpha}-helical coiled-coils. We find that the chromophore and even its specific regioisomers have a significant influence on the microscopic structure and dynamics of the self-assembled fibril, and on the macroscopic mechanical properties. This is because the chromophore influences the possible salt-bridges which form and stabilize the fibril formation. Furthermore we find that the solvation shell fibrils by itself cannot explain the viscoelasticity of hFF03 hydrogels. Our atomistic model of the hFF03 fibril formation enables a more rational design of these hydrogels. In particular, altering the N-terminal chromophore emergesas a design strategy to tune the mechanic properties of these self-assembled peptide hydrogels.Comment: 15 pages, 15 including appendi
    • …
    corecore