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Abstract:  The purpose of this study was to quantify the accuracy and 

precision of a biplane fluoroscopy system for model-based tracking of 

in vivo hindfoot motion during over-ground gait. Gait was simulated by 

manually manipulating a cadaver foot specimen through a biplane 

fluoroscopy system attached to a walkway. Three 1.6-mm diameter 

steel beads were implanted into the specimen to provide marker-based 

tracking measurements for comparison to model-based tracking. A CT 

scan was acquired to define a gold standard of implanted bead 

positions and to create 3D models for model-based tracking. Static and 

dynamic trials manipulating the specimen through the capture volume 

were performed. Marker-based tracking error was calculated relative 

to the gold standard implanted bead positions. The bias, precision, and 

root-mean-squared (RMS) error of model-based tracking was 

calculated relative to the marker-based measurements. The overall 

RMS error of the model-based tracking method averaged 

0.43 ± 0.22 mm and 0.66 ± 0.43° for static and 0.59 ± 0.10 mm and 

0.71 ± 0.12° for dynamic trials. The model-based tracking approach 

represents a non-invasive technique for accurately measuring dynamic 

hindfoot joint motion during in vivo, weight bearing conditions. The 

model-based tracking method is recommended for application on the 

basis of the study results. 

Keywords: Biplane fluoroscopy; Model-based;Hindfoot; Gait; 

Biomechanics 

1. Introduction 
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Gait analysis is commonly used to evaluate lower extremity 

kinematics and kinetics of both normal and pathological motion 

patterns. Conventionally, external markers are placed on the skin over 

specific bony landmarks, such that optical cameras can track marker 

locations and relate them to the motion of the underlying bones [1]. 

This method has been well documented and is frequently used in 

research and clinical studies [2,3]. While optical motion analysis 

systems are easy to implement and are clinically relevant for multiple 

applications, methodological shortcomings affect analyses of the 

hindfoot. Understanding the biomechanics of the hindfoot during gait is 

critical to the proper care of patients with a variety of orthopedic 

impairments and foot deformities resulting from conditions such as 

cerebral palsy, spina bifida, clubfoot, traumatic brain injury and spinal 

cord injury [4]. 

The foot consists of 26 bones, many of which lack suitable 

landmarks for external marker placement. In current external marker 

based models, individual bones are frequently grouped together in 

segments. The most simplistic models treat the entire foot as a single 

segment with a single “ankle” joint, while more complex multi-

segmental models divide the foot among two to nine segments [4–10]. 

Only the nine segment model developed by Hwang et al. included 

individual segments of the calcaneus and talus to allow for subtalar 

joint motion to be determined [9]. In all of these models, bones within 

a segment are assumed not to move with respect to each other. This 

“rigid-segment” assumption has been questioned in the literature, with 

errors as high as 6.9° reported [11]. In addition to the methodological 

requirement of grouping bones together, external marker based 

models suffer from skin motion artifact (SMA). SMA is the relative 

movement between a skin mounted marker and the underlying bone 

and is considered the most significant source of error in gait analysis 

[1,12]. In the hindfoot, SMA has been reported to range from 2.7 to 

14.9 mm, with the largest error occurring at the malleoi [13]. 

Fluoroscopy offers a valuable complement to conventional 

motion analysis by providing dynamic intra-articular joint motion 

measurements during weight bearing while eliminating rigid-body 

assumptions and SMA. The radiographic nature of fluoroscopy also 

allows for gait analysis during shoe wear, brace wear, and orthotic 

usage that is not achievable using optical motion analysis with external 

https://doi.org/10.1016/j.medengphy.2017.02.009
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S1350453317300619?via%3Dihub#bib0001
http://www.sciencedirect.com/science/article/pii/S1350453317300619?via%3Dihub#bib0002
http://www.sciencedirect.com/science/article/pii/S1350453317300619?via%3Dihub#bib0004
http://www.sciencedirect.com/science/article/pii/S1350453317300619?via%3Dihub#bib0004
http://www.sciencedirect.com/science/article/pii/S1350453317300619?via%3Dihub#bib0009
http://www.sciencedirect.com/science/article/pii/S1350453317300619?via%3Dihub#bib0011
http://www.sciencedirect.com/science/article/pii/S1350453317300619?via%3Dihub#bib0001
http://www.sciencedirect.com/science/article/pii/S1350453317300619?via%3Dihub#bib0013


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

[Medical Engineering & Physics, Vol 43,  (May 2017): pg. 118-123. DOI. This article is © [Elsevier] and permission has been 
granted for this version to appear in e-Publications@Marquette. [Elsevier] does not grant permission for this article to be 
further copied/distributed or hosted elsewhere without the express permission from [Elsevier].] 

4 

 

markers. Two-dimensional (2D) in vivo fluoroscopic analysis of the 

hindfoot has been reported by both our group and other authors [14–

22]. While these 2D analyses are valuable for quantifying single plane 

dynamics, they lack the ability to determine out of plane motions, such 

as axial rotation of the subtalar joint [23,24]. Capturing tri-axial 

motion requires the addition of a second fluoroscope to capture images 

in two different planes. The radiographic image sequences are required 

to be captured synchronously to enable accurate three-dimensional 

(3D) localization of the bone segments at each time point. 

Biplane fluoroscopy is performed with two different tracking 

techniques. In marker-based tracking, tantalum beads implanted in 

bones are used to track and calculate kinematics. A minimum of three 

beads per bone segment are required for 3D analysis [25]. This is an 

invasive procedure that is limited to animals, or subjects who are 

undergoing a surgical procedure at the same time as implantation 

[26]. Model-based tracking determines bone position and orientation 

by comparing a 3D bone model, obtained with a CT or MR scan, to the 

acquired biplane fluoroscopic images [27]. Model based tracking is 

non-invasive, and with properly defined protocols, result in minimal 

dose of ionizing radiation. 

For biplane systems, it is recommended that an evaluation be 

performed specifically for the anatomical joints and activities that it 

will be used to analyze [28,29]. The majority of bi-plane foot/ankle 

studies appearing in the literature analyzed quasi-static motions [30–

34], not natural gait. Of the dynamic foot/ankle studies found in the 

literature, accuracy was either not reported [35,36], or assumed to be 

the same as that of systems designed for other anatomical joints 

[30,37]. One recently reported biplane study does describe sub-

millimeter precision and accuracy in a system specifically designed for 

analysis of the foot/ankle during gait [38]. In that study, the gait cycle 

was determined in a piecewise manner, as the use of a treadmill 

prevented heel strike and toe off data from being collected 

simultaneously. Another biplane system designed for the foot also 

describing sub-millimeter precision was validated using four 

articulated, and two unarticulated dry tarsal bones recording at 15 Hz 

[39]. The goal of the current study was to evaluate the static and 

dynamic error of a biplane system designed for analyzing in vivo 

hindfoot motion during over-ground gait using a model-based tracking 
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algorithm. Marker-based tracking was additionally evaluated and used 

as the control when determining accuracy of model-based tracking, 

similar to previously performed studies [26,29,40,41]. 

2. Methods 

2.1. Biplane system 

The biplane system (Fig. 1) was constructed to be centered 

about a 46.4 by 50.8 cm force plate (AMTI OR6-500 6-DOF, 

Watertown, MA) embedded in a 7 m long custom walkway. Two x-ray 

sources (OEC 9000, GE Healthcare, Fairfield, CT), and two image 

intensifiers (II's, 15″ diam., Dunlee, Aurora, IL) were custom mounted 

to the walkway with a 60° angle between the sources. The source-to-

detector and source-to-object-center distances were 112 cm and 

76 cm, respectively for both source-intensifier pairs. During data 

acquisition, the x-ray sources were set at 100 kV and 2.0 mA 

continuous exposure, with an estimated effective dose of 10 µSv 

during a 2 s trial. High-speed, high resolution (1024 × 1024) cameras 

(N4, IDT, Pasadena, CA) with 52 mm lenses (Nikon, Melville, NY) were 

attached to each II. Images were captured at 200 fps and digitized 

directly to a controller PC via Motion Studio 64 (Version 2.10.05, IDT, 

Pasadena, CA). A trigger mechanism was developed to ensure 

synchronous recording between the cameras and the force plate. High 

acceleration impact testing was performed to ensure accurate, 

simultaneous detection of heel strike and toe off in the fluoroscopic 

images. A superball was dropped on the force plate so that only a 

single fluoroscopic frame (at 200 fps) with the ball in contact 

appeared. This was then compared with a single frame spike in the 

analog force plate data at the same time (±1 frame). 
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1. Download high-res image (411KB) 

2. Download full-size image 

Fig. 1. Custom built biplane fluoroscopic system attached to walkway 

with embedded force plate; x- and y-axis of lab coordinate system 

shown (z-axis pointing up). 

2.2. Cadaver specimen 

A fresh frozen trans-tibial cadaver foot from a 34 year old male 

was obtained in accordance with institutionally approved IRB 

standards. Three 1.6-mm diameter steel beads were implanted into 

each of the three hindfoot bones (calcaneus, talus, and tibia) with 

minimal dissection of the surrounding soft tissues, and maximal 

distance between beads in the same bone (Fig. 2). A board eligible 

orthopedic surgeon drilled 2-mm holes into the cortical bone so that 

the beads could be manually pressed into the hole until flush according 

to the method described by Bey et al. [26]. The beads were then 

secured into place using cyanoacrylate adhesive. A 16-mm diameter 

steel rod was fixed to the specimen using a bone plate attached to the 

proximal end of the tibia for manual manipulation through the imaging 

capture volume. 
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1. Download high-res image (74KB) 

2. Download full-size image 

Fig. 2. Fluoroscopic image of the nine bead positions within the 

cadaver specimen. 

2.3. CT scan 

A CT scan (120 kV, 270 mA) of the cadaver foot was obtained 

consisting of 956, 0.625-mm thick transverse-plane slices (512 × 512 

pixels) (LightSpeed VCT, GE Healthcare, Milwaukee, WI) to generate 

volumetric models of the calcaneus, talus, and tibia. An image 

processing algorithm was implemented in MATLAB (MathWorks, Natick, 

MA) to determine the sub-pixel bead centroids, which represented the 

gold standard bead locations. For model-based tracking, 3D bone 

models were generated by segmentation of the CT scan performed 

using 32-bit OsiriX software (version 3.8.1, Pixmeo, Geneva, 

Switzerland). Within the 3D bone models, the radiopaque bead 

locations were identified manually and replaced with the mean values 

from surrounding voxels to eliminate influences of the beads on the 

model-based tracking. 

2.4. Static and dynamic trials 

Image sequences were obtained during 33 different static 

positions of the foot (100 frames per trial), as well as during 10 

dynamic trials (150–200 frames per trial). Rotational static positions 

were captured at 11 different foot progression angles, in 5° rotational 
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increments from −25° to +25°, with the heel placed at the center of 

the capture volume (Fig. 3A). Translational static positions were 

collected with a neutral foot progression angle at 22 positions within 

the capture volume in accordance to a 30 × 30 cm grid (Fig. 3B). 

Finally, 10 dynamic trials were collected by manually simulating gait 

through the volume via the attached tibial rod. The force plate was 

used for event detection of heel strike and toe off. 

 

1. Download high-res image (283KB) 

2. Download full-size image 

Fig. 3. (A) 11 static foot progression angles. (B) Grid used for 

translational measurements. 

2.5. Distortion correction and geometry calibration 

Open source software, X-Ray Reconstruction of Moving 

Morphology (XROMM, Brown University, Providence, RI) was used for 

II distortion correction as described by Brainerd et al. [25]. The direct 

linear transformation (DLT) technique was used to define the linear 

transformation between the 3D object space and the 2D image planes 

[42]. An acrylic calibration cube with 64 precisely positioned steel 

spheres implanted as calibration points [25] was manufactured and 

imaged with the biplane system. A coordinate measuring machine 

(CMM, Gage 2000, Brown & Sharpe, North Kingstown, RI) was used to 

document the physical geometrical characteristics of the cube, and to 
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verify the positions of the beads within a linear accuracy of 0.005 mm. 

Points in the x-ray images of the cube were digitized and compared 

with the known points of the cube, as measured by the CMM, to 

determine the 11 DLT coefficients [43]. The calibration cube origin was 

used as the global lab coordinate system origin, with the x-axis 

parallel to walkway, y-axis across the walkway, and z-axis (vertical) 

perpendicular to the walkway (x- and y-axis shown in Fig. 1). 

2.6. Marker-based tracking 

After image distortion correction and geometry calibration, 

marker-based tracking was performed using standard DLT techniques 

[43]. In the first image of each sequence, the implanted beads were 

manually selected to start the automated tracking algorithm. If the 

algorithm failed to locate a bead while tracking the sequence, the bead 

was relocated manually, and then the automated tracking was 

resumed. The Euclidean distance between two beads within the same 

bone was found in both the CT and fluoroscopic images. The CT inter-

bead distance was considered the true distance. The marker-based 

tracking error was calculated as the absolute value of the true distance 

minus the estimated distance. Error was calculated within each image, 

with the mean and standard deviation reported for the entire 

sequence, for all of the trials, as previously done in similar validation 

studies [25,44–46]. 

2.7. Model-based tracking 

The acquired static and dynamic fluoroscopic imaging sequences 

were also used to quantify the accuracy and precision of model-based 

tracking. An automated image processing algorithm located the beads 

in all the 2D fluoroscopic images and replaced the bead pixels with 

intensity values from the distribution of pixels in the region 

surrounding each bead prior to model-based tracking. Model-based 

tracking was performed using validated software, Autoscoper (Brown 

University, Providence, RI) [44]. Autoscoper follows the auto-

registration algorithms developed by You et al. [27] and Bey et al. 

[26]. These algorithms use digitally reconstructed radiographs (DRRs) 

generated by ray-traced projections through a 3D bone model. 

Autoscoper uses a downhill simplex optimization algorithm that 
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iterates over the 6 degree of freedom (DOF) motion parameters to find 

the bone positions for which the DRRs best match the acquired x-ray 

images. In the current study, the calcaneus, tibia, and talus were 

tracked separately using 3D bone models generated from the CT data. 

A trained user first manually aligned the bone models with the biplane 

x-ray images to obtain the best visual fit every 2 to 5 frames 

throughout the image sequence. Sobel edge detection and contrast 

enhancement filters were applied to the bone models and biplane 

image sequences to improve alignment. These parameters were 

selected by the user to provide the best visual match. The Autoscoper 

optimization algorithm was then performed on the manually aligned 

frames, with the Autoscoper software interpolating between the 

optimized frames. Once the tracking was complete, the 6 DOF results 

were output (x, y, z position, yaw, pitch, roll orientation from the 

origin of the CT scan) with respect to the lab coordinate system. 

Accuracy of the trials was assessed by simultaneously 

comparing marker-based and model-based tracking results. The 

marker-based tracking directly found the bead locations in the lab 

coordinate system. Model-based tracking found the bone position (6 

DOF) of the CT origin in the lab coordinate system. With the known 

bead positions from the CT scan, a transformation matrix was applied 

to the Autoscoper output to project the 3D positions of the beads in 

the laboratory coordinate system, to enable a direct comparison 

between the marker-based and model-based tracking translational 

error (in millimeters). To determine the rotational error, the three 

bead locations in each bone were used to create local coordinate 

systems. A YXZ Euler angle sequence was used to compare the 

rotational differences between the marker-based and model-based 

output of each bone. Agreement between the marker-based and 

model-based tracking results was quantified as bias in each xyz bead 

coordinate (difference in bead positions between the two methods, 

averaged across all trials) and precision (standard deviation of the 

difference in bead positions between the two methods, averaged 

across all trials). The root-mean-squared (RMS) error of the bead 

positions estimated through model-based tracking relative to the 

marker-based bead positions across all trials was calculated to assess 

the overall accuracy of the model-based tracking method. To assess 

the intra-observer error associated with the model-based tracking 
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method, all three bones were tracked repeatedly five times in one 

randomly selected dynamic trial. 

3. Results 

The marker-based tracking method resulted in an average of 

0.1% error across the three bones in both the static and dynamic 

trials. The absolute error was lower in the static trials than the 

dynamic trials for all three bones, with the differences ranging from 

0.05 to 0.10 mm (Table 1). 

Table 1. Marker-based absolute mean tracking error (reported in mm) 

and standard deviation (± SD). 

 Calcaneus Talus Tibia Overall 

Static 0.16 ± 0.04 0.14 ± 0.05 0.13 ± 0.04 0.15 ± 0.04 

     

Dynamic 0.22 ± 0.12 0.19 ± 0.15 0.23 ± 0.18 0.21 ± 0.15 

The overall bias, precision, and RMS error for the static, 

dynamic and intra-observer trials all demonstrated sub-millimeter and 

sub-degree tracking results. The model-based tracking bias, precision, 

and RMS error results are listed in Table 2. The overall precision and 

RMS error were both lower in the static trials than the dynamic, with 

the translational error smaller than rotational error across all trials 

(Table 2). The overall RMS error between methods averaged 

0.43 ± 0.22 mm and 0.66 ± 0.43° for static trials, and 0.59 ± 0.10 mm 

and 0.71 ± 0.12° for dynamic trials. Across all trials, the tibia had the 

lowest RMS error, followed by the talus, then the calcaneus. The intra-

observer error of model-based tracking was low across all three 

measures, with an overall RMS error between trials of 0.62 ± 0.12 mm 

and 0.66 ± 0.14° (Table 3). 

Table 2. Model-based tracking accuracy for individual bones (± SD). 

 Calcaneus Talus Tibia Overall 

(A) Model-based tracking bias 

Static (mm) −0.08 ± 0.28 0.13 ± 0.45 0.05 ± 0.22 0.03 ± 0.32 
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 Calcaneus Talus Tibia Overall 

Static (°) 0.10 ± 0.69 −0.05 ± 0.95 0.02 ± 0.65 0.02 ± 0.76 

Dynamic 

(mm) 
−0.16 ± 0.17 −0.04 ± 0.22 −0.09 ± 0.15 −0.10 ± 0.18 

Dynamic (°) 0.13 ± 0.20 0.02 ± 0.28 0.01 ± 0.26 0.06 ± 0.25 

(B) Model-based tracking precision 

Static (mm) 0.09 ± 0.08 0.06 ± 0.03 0.05 ± 0.03 0.07 ± 0.05 

Static (°) 0.06 ± 0.03 0.33 ± 0.14 0.13 ± 0.06 0.17 ± 0.08 

Dynamic 

(mm) 
0.86 ± 0.24 0.51 ± 0.08 0.40 ± 0.07 0.59 ± 0.13 

Dynamic (°) 0.69 ± 0.15 0.68 ± 0.11 0.66 ± 0.08 0.67 ± 0.11 

(C) Model-based tracking RMS 

Static (mm) 0.54 ± 0.23 0.47 ± 0.27 0.26 ± 0.16 0.43 ± 0.22 

Static (°) 0.56 ± 0.40 0.88 ± 0.55 0.55 ± 0.32 0.66 ± 0.43 

Dynamic 

(mm) 
0.84 ± 0.16 0.52 ± 0.09 0.42 ± 0.06 0.59 ± 0.10 

Dynamic (°) 0.72 ± 0.15 0.72 ± 0.12 0.68 ± 0.10 0.71 ± 0.12 

Table 3. Intra-observer error of model-based tracking (± SD). 

 Calcaneus Talus Tibia Overall 

(A) Intra-observer bias, precision, RMS (mm) 

Bias −0.01 ± 0.08 0.00 ± 0.35 0.01 ± 0.07 0.00 ± 0.17 

Precision 0.93 ± 0.13 0.63 ± 0.21 0.56 ± 0.09 0.71 ± 0.14 

RMS error 0.75 ± 0.10 0.57 ± 0.17 0.52 ± 0.08 0.62 ± 0.12 

(B) Intra-observer bias, precision, RMS (°) 

Bias −0.05 ± 0.16 0.02 ± 0.12 0.06 ± 0.09 0.01 ± 0.12 

Precision 0.64 ± 0.11 0.58 ± 0.18 0.62 ± 0.10 0.61 ± 0.13 

RMS error 0.66 ± 0.10 0.61 ± 0.21 0.71 ± 0.09 0.66 ± 0.14 

4. Discussion 

https://doi.org/10.1016/j.medengphy.2017.02.009
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This study evaluated the static and dynamic error of a biplane 

fluoroscopic system using both marker-based and model-based 

tracking of the hindfoot during over-ground gait. For marker-based 

tracking, the system's average absolute error across all three bones 

was 0.15 ± 0.04 mm for static and 0.21 ± 0.15 mm for dynamic trials. 

These numbers compare well with marker-based validation in other 

systems (Table 4). The previous marker-based studies evaluated their 

systems using phantom objects with implanted metal beads that may 

not replicate complex bone geometries. The current study used beads 

implanted in bones in a cadaver specimen with all the soft tissues 

intact. This allowed for a realistic system evaluation under the same 

conditions that would be used to clinically analyze hindfoot kinematics. 

In addition, the purpose of the marker-based tracking was to establish 

a control reference in which to compare the model-based tracking, as 

model-based is the objective moving forward to avoid the invasive 

implanting of beads in human subjects. 

Table 4. Summary of marker-based validation study results. 

 Static 

translation 

Static 

rotation 
Dynamic 

Miranda et al. 

[43] 
0.12 mm (±0.08) 0.09° (±0.08) – 

Iaquinto et al. 

[44] 

0.094 mm 

(±0.081) 

0.083° 

(±0.068) 

0.126 mm 

(±0.122) 

Tashman et al. 

[45] 
– – 0.02 mm 

Brainerd et al. 

[25] 
– – 

0.037 mm 

(±0.046) 

For model-based tracking, current study results indicated that 

the system had a bias range of −0.16 to 0.13 mm and −0.05 to 0.13°, 

precision range of 0.05 to 0.86 mm and 0.06 to 0.69°, and an overall 

dynamic RMS average error of 0.59 mm and 0.71°. In both the static 

and dynamic trials, the tibia had the lowest RMS error, followed by the 

talus, then the calcaneus. This same order of error across the three 

bones was also found by Wang et al. for both the bias and precision 

measures [38]. Wang et al. found a bias range of 0.31 mm–0.50 mm 
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and a precision range of 0.15 mm–0.20 mm in their system [38]. It is 

hypothesized that the long bone shape of the tibia is easier to track 

than the irregular shape of the talus and calcaneus. 

The extremely low intra-observer user error demonstrates the 

highly repeatability method of the semi-automated model-based 

tracking technique used. The intra-observer user error bias of 

0.00 ± 0.17 mm and 0.01 ± 0.12° was similar to findings of Anderst et 

al. reported from repeatedly tracking two cervical spine segments 

three times using model-based tracking (0.02 mm and 0.06°) [47]. 

Although approximately 5000 frames were used to track the 

bones, the study was limited by using a single cadaver specimen. The 

use of a cadaver specimen was essential in the validation of the 

model-based tracking method, due to the limitations and invasiveness 

of implanting markers into human subjects. The system has been 

previously used as a 2D, sagittal plane system to analyze 13 subjects 

hindfoot kinematics during barefoot ambulation [16,17]. This study is 

additionally limited by the use of ionizing radiation. The effective dose 

during a foot and ankle CT scan is 70 µSv, which is slightly less than 

the 80 µSv of effective dose received from a conventional chest x-ray 

[48]. The effective dose for a foot and ankle CT, plus 1 biplane 

fluoroscopic static trial and 10 dynamic trials in the current system is 

estimated to total 180 µSv. The United States Nuclear Regulatory 

Commission places an annual occupational limit of whole body 

effective dose at 5 rems (50,000 µSv). In the United States, the 

average person is exposed to 3000 µSv every year from natural 

background radiation [49]. To reduce radiation exposure, the use of 

MRI [30,40] or statistical shape models [50,51] could be investigated 

to eliminate the CT scan. 

Numerous factors that may influence the accuracy of model-

based tracking, including the shape of a particular bone, the method 

used during CT segmentation of the bone, the radiographic parameters 

(voltage and current), the presence of surrounding soft tissues, the 

overlap from surrounding bones, the magnitude of joint motion, and 

the velocity of joint motion [29]. Because of these factors, it is 

important that each system be evaluated specifically for the 

anatomical joints and activities for which it will be used [28,29]. In the 

current study on hindfoot motion during gait, the overall dynamic RMS 
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average error of 0.59 mm is well below the estimated 2.7–14.9 mm 

error at the foot due to skin movement artifacts of skin-mounted 

markers [13]. These results indicate that biplanar fluoroscopic 

hardware and tracking methods can be used to effectively track in vivo 

hindfoot bone motion within 0.59 mm and 0.71°. In this study, model-

based tracking was evaluated under the conditions that match the 

planned in vivo tracking trials. 
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