2,488 research outputs found
Survey of selected insect taxa of Fort Sill, Comanche County, Oklahoma. Pt. 1, Selected Coleoptera, Hymenoptera, Lepidoptera, and Orthoptera
Includes bibliographical references (pages 73-77)
Head Impact Magnitude in American High School Football
OBJECTIVES: To describe determinants of head impact magnitudes between various play aspects in high school football.
METHODS: Thirty-two high school American football players wore Head Impact Telemetry System instrumented helmets to capture head impact magnitude (linear acceleration, rotational acceleration, and Head Impact Technology severity profile [HITsp]). We captured and analyzed video from 13 games (n = 3888 viewable head impacts) to determine the following play aspects: quarter, impact cause, play type, closing distance, double head impact, player's stance, player's action, direction of gaze, athletic readiness, level of anticipation, player stationary, ball possession, receiving ball, and snapping ball. We conducted random intercepts general linear mixed models to assess the differences in head impact magnitude between play aspects (α = 0.05).
RESULTS: The following aspects resulted in greater head impact magnitude: impacts during the second quarter (HITsp: P = .03); contact with another player (linear, rotational, HITsp: P < .001); initial head impact when the head is struck twice (linear, rotational, HITsp: P < .001); longer closing distances, especially when combined with a 3-point stance or when being struck in the head (linear: P = .03); the 2-point stance (linear, rotational, HITsp: P < .001); and offensive linemen not snapping the ball compared with those snapping the ball (rotational: P = .02, HITsp: P = .02).
CONCLUSIONS: Preventing head impacts caused by contact with another player may reduce head impact magnitude in high school football. Rule or coaching changes that reduce collisions after long closing distances, especially when combined with the 3-point stance or when a player is being struck in the head, should be considered
Safe-Play Knowledge, Aggression, and Head-Impact Biomechanics in Adolescent Ice Hockey Players
Addressing safe-play knowledge and player aggression could potentially improve ice hockey sport safety
A Light Echo from Type Ia Supernova 1995E?
We identify a light echo candidate from Hubble Space Telescope (HST) imaging
of NGC 2441, the host galaxy of the Type Ia supernova 1995E. From the echo's
angular size and the estimated distance to the host galaxy, we find a distance
of 207 +/- 35 pc between the dust and the site of the supernova. If confirmed,
this echo brings the total number of observed non-historical Type Ia light
echoes to three -- the others being SN 1991T and SN 1998bu -- suggesting they
are not uncommon. We compare the properties of the known Type Ia supernova
echoes and test models of light echoes developed by Patat et al. (2005). HST
photometry of the SN 1991T echo shows a fading which is consistent with
scattering by dust distributed in a sphere or shell around the supernova. Light
echoes have the potential to answer questions about the progenitors of Type Ia
supernovae and more effort should be made for their detection given the
importance of Type Ia supernovae to measurements of dark energy.Comment: 19 pages, 4 postscript figures, 3 tables, accepted for publication in
the Ap
Cosmological Results from High-z Supernovae
The High-z Supernova Search Team has discovered and observed 8 new supernovae
in the redshift interval z=0.3-1.2. These independent observations, confirm the
result of Riess et al. (1998a) and Perlmutter et al. (1999) that supernova
luminosity distances imply an accelerating universe. More importantly, they
extend the redshift range of consistently observed SN Ia to z~1, where the
signature of cosmological effects has the opposite sign of some plausible
systematic effects. Consequently, these measurements not only provide another
quantitative confirmation of the importance of dark energy, but also constitute
a powerful qualitative test for the cosmological origin of cosmic acceleration.
We find a rate for SN Ia of 1.4+/-0.5E-04 h^3/Mpc^3/yr at a mean redshift of
0.5. We present distances and host extinctions for 230 SN Ia. These place the
following constraints on cosmological quantities: if the equation of state
parameter of the dark energy is w=-1, then H0 t0 = 0.96+/-0.04, and O_l - 1.4
O_m = 0.35+/-0.14. Including the constraint of a flat Universe, we find O_m =
0.28+/-0.05, independent of any large-scale structure measurements. Adopting a
prior based on the 2dF redshift survey constraint on O_m and assuming a flat
universe, we find that the equation of state parameter of the dark energy lies
in the range -1.48-1,
we obtain w<-0.73 at 95% confidence. These constraints are similar in precision
and in value to recent results reported using the WMAP satellite, also in
combination with the 2dF redshift survey.Comment: 50 pages, AAS LateX, 15 figures, 15 tables. Accepted for publication
by Astrophysical Journa
Imaging and Demography of the Host Galaxies of High-Redshift Type Ia Supernovae
We present the results of a study of the host galaxies of high redshift Type
Ia supernovae (SNe Ia). We provide a catalog of 18 hosts of SNe Ia observed
with the Hubble Space Telescope (HST) by the High-z Supernova Search Team
(HZT), including images, scale-lengths, measurements of integrated (Hubble
equivalent) BVRIZ photometry in bands where the galaxies are brighter than m ~
25 mag, and galactocentric distances of the supernovae. We compare the
residuals of SN Ia distance measurements from cosmological fits to measurable
properties of the supernova host galaxies that might be expected to correlate
with variable properties of the progenitor population, such as host galaxy
color and position of the supernova. We find mostly null results; the current
data are generally consistent with no correlations of the distance residuals
with host galaxy properties in the redshift range 0.42 < z < 1.06. Although a
subsample of SN hosts shows a formally significant (3-sigma) correlation
between apparent V-R host color and distance residuals, the correlation is not
consistent with the null results from other host colors probed by our largest
samples. There is also evidence for the same correlations between SN Ia
properties and host type at low redshift and high redshift. These similarities
support the current practice of extrapolating properties of the nearby
population to high redshifts pending more robust detections of any correlations
between distance residuals from cosmological fits and host properties.Comment: 35 pages, 12 figures, 4 tables, accepted for publication in A
Structure and Function of the Transmembrane Domain of NsaS, an Antibiotic Sensing Histidine Kinase in Staphylococcus aureus
NsaS is one of four intramembrane histidine kinases (HKs) in Staphylococcus aureus that mediate the pathogen's response to membrane active antimicrobials and human innate immunity. We describe the first integrative structural study of NsaS using a combination of solution state NMR spectroscopy, chemical-cross-linking, molecular modeling and dynamics. Three key structural features emerge: First, NsaS has a short N-terminal amphiphilic helix that anchors its transmembrane (TM) bundle into the inner leaflet of the membrane such that it might sense neighboring proteins or membrane deformations. Second, the transmembrane domain of NsaS is a 4-helix bundle with significant dynamics and structural deformations at the membrane interface. Third, the intracellular linker connecting the TM domain to the cytoplasmic catalytic domains of NsaS is a marginally stable helical dimer, with one state likely to be a coiled-coil. Data from chemical shifts, heteronuclear NOE, H/D exchange measurements and molecular modeling suggest that this linker might adopt different conformations during antibiotic induced signaling
Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First Two Years
We present the results of spectroscopic observations of targets discovered
during the first two years of the ESSENCE project. The goal of ESSENCE is to
use a sample of ~200 Type Ia supernovae (SNe Ia) at moderate redshifts (0.2 < z
< 0.8) to place constraints on the equation of state of the Universe.
Spectroscopy not only provides the redshifts of the objects, but also confirms
that some of the discoveries are indeed SNe Ia. This confirmation is critical
to the project, as techniques developed to determine luminosity distances to
SNe Ia depend upon the knowledge that the objects at high redshift are the same
as the ones at low redshift. We describe the methods of target selection and
prioritization, the telescopes and detectors, and the software used to identify
objects. The redshifts deduced from spectral matching of high-redshift SNe Ia
with low-redshift SNe Ia are consistent with those determined from host-galaxy
spectra. We show that the high-redshift SNe Ia match well with low-redshift
templates. We include all spectra obtained by the ESSENCE project, including 52
SNe Ia, 5 core-collapse SNe, 12 active galactic nuclei, 19 galaxies, 4 possibly
variable stars, and 16 objects with uncertain identifications.Comment: 38 pages, 9 figures (many with multiple parts), submitted to A
The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration
We present photometric observations of an apparent Type Ia supernova (SN Ia)
at a redshift of ~1.7, the farthest SN observed to date. SN 1997ff, was
discovered in a repeat observation by the HST of the HDF-), and serendipitously
monitored with NICMOS on HST throughout the GTO campaign. The SN type can be
determined from the host galaxy type:an evolved, red elliptical lacking enough
recent star formation to provide a significant population of core-collapse SNe.
The class- ification is further supported by diagnostics available from the
observed colors and temporal behavior of the SN, both of which match a typical
SN Ia. The photo- metric record of the SN includes a dozen flux measurements in
the I, J, and H bands spanning 35 days in the observed frame. The redshift
derived from the SN photometry, z=1.7+/-0.1, is in excellent agreement with the
redshift estimate of z=1.65+/-0.15 derived from the
U_300,B_450,V_606,I_814,J_110,J_125,H_160, H_165,K_s photometry of the galaxy.
Optical and near-infrared spectra of the host provide a very tentative
spectroscopic redshift of 1.755. Fits to observations of the SN provide
constraints for the redshift-distance relation of SNe~Ia and a powerful test of
the current accelerating Universe hypothesis. The apparent SN brightness is
consistent with that expected in the decelerating phase of the preferred
cosmological model, Omega_M~1/3, Omega_Lambda~2/3. It is inconsistent with grey
dust or simple luminosity evolution, candidate astro- physical effects which
could mimic past evidence for an accelerating Universe from SNe Ia at z~0.5.We
consider several sources of possible systematic error including lensing, SN
misclassification, selection bias, and calibration errors. Currently, none of
these effects appears likely to challenge our conclusions.Comment: Accepted to the Astrophysical Journal 38 pages, 15 figures, Pretty
version available at http://icarus.stsci.edu/~stefano/ariess.tar.g
- …