70,557 research outputs found
On the Electronic Spectroscopy of Closed Shell Cations Derived From Resonance Stabilized Radicals: Insights From Theory and Franck-Condon Analysis
Context. Recent attention has been directed on closed-shell aromatic cations as potential carriers of the diffuse interstellar bands. The spectra of mass-selected, matrix-isolated benzylium, and tropylium cations were recently reported. The visible spectrum of benzylium exhibits a large Franck-Condon (FC) envelope, inconsistent with diffuse interstellar band carriers.
Aims. We perform a computational analysis of the experimentally studied benzylium spectrum before extending the methods to a range of larger, closed-shell aromatic cations to determine the potential for this class of systems as diffuse interstellar band carriers.
Methods. Density functional theory (DFT), time-dependant ((TD)DFT), and multi-configurational self-consistent field second-order perturbation theory (MRPT2) methods in concert with multidimensional FC analysis is used to model the benzylium spectrum. These methods are extended to larger closed-shell aromatic hydrocarbon cations derived from resonance-stabilized radicals, which are predicted to show strong S0 â Sn transitions in the visible region. The ionization energies of a range of these systems are also calculated by DFT.
Results. The simulated benzylium spectrum was found to yield excellent agreement with the experimental spectrum showing an extended progression in a low frequency (510 cm-1) ring distortion mode. The FC progression was found to be significantly quenched in the larger species: 1-indanylium, 1-naphthylmethylium, and fluorenium. Excitation and ionization energies of the closed-shell cations were found to be consistent with diffuse interstellar band carriers, with the former lying in the visible range and the latter straddling the Lyman limit in the 13â14 eV range.
Conclusions. Large closed-shell polycyclic aromatic hydrocarbon cations remain viable candidate carriers of the diffuse interstellar bands
No new limit on the size distribution of gamma-ray bursts
The results of a study (Carter et. al.) of gamma ray bursts using long duration balloon exposure are analyzed. Arguments are presented against the conclusion that the size spectrum extrapolates to a power law with index from -1.0 to -0.5, and that therefore the gamma ray bursts are of galactic origin. It is claimed that the data are consistent with an upper limit over 100 times that proposed, and that therefore no conclusion can be drawn from the measurements regarding the nature or origin of gamma ray bursts. The resulting upper limit to the rate of occurrence of small bursts lies above the -1.5 index power law extrapolation of the size spectrum of known events, i.e., greater than the rate expected from an infinitely extended source region
Fano interference effect on the transition spectrum of single electron transistors
We theoretically study the intraband transition spectrum of single electron
transistors (SETs) composed of individual self-assembled quantum dots. The
polarization of SETs is obtained by using the nonequilibrium Green's function
technique and the Anderson model with three energy levels. Owing to
nonradiative coupling between two excited states through the continuum of
electrodes, the Fano interference effect significantly influences the peak
position and intensity of infrared wavelength single-photon spectrum.Comment: 4 pages, 5 figure
Understanding co-operative R&D activity: evidence from four European countries
This paper investigates co-operative research activity by firms using data from
the 3rd Community Innovation Survey for four countries, France, Germany, Spain and the
UK. We build on the Cassiman and Veugelers (CV) (2002) study of Belgian manufacturing
firms, by incorporating information on the service sector, and considering the role of public
support in affecting firmsâ decisions to co-operate. Our results support those in CV, in that
we find a positive relationship between the likelihood of undertaking co-operative R&D
and both incoming knowledge spillovers and the extent to which firms find strategic
methods important in appropriating the returns to innovative activity. We find that public
support is positively related to the probability of undertaking co-operative agreements
particularly with regard to the likelihood of co-operation with the research base. We find
some evidence, in particular for Spain, that firms carry out co-operative R&D to overcome
excessive perceived risks and financial constraints
- âŠ