60,621 research outputs found

    Quality control of microelectronic wire bonds

    Get PDF
    Report evaluates ultrasonic bonding of small-diameter aluminum wire joined to ceramic substrates metalized with thin-film and thick-film gold. Quick testing technique for nondestructive location of poor wire bonds is also presented

    Sun direction detection system

    Get PDF
    One of the detectors is an illumination detector consisting of two spaced apart elongated strips with a strip of cadmium sulphide (Cds) deposited therebetween. Whenever the line image impinges the CdS strip, the resistance between the two other strips is relatively low, while being high when the line image is outside the field of view of the illumination detector. Also included is a sun angle detector which consists of a vapor deposited resistor strip connected at one end to plus 10v and at the other end to minus 10v. Spaced apart from the resistor strip is an elongated strip of low resistance material acting as an output strip, with a CdS strip between the two strips. When the line image is within the field of view of the sun angle detector, the output voltage at the output strip depends on the position of the line image across the sun angle detector

    Quantum Condensates in Nuclear Matter: Problems

    Full text link
    In connection with the contribution "Quantum Condensates in Nuclear Matter" some problems are given to become more familiar with the techniques of many-particle physics.Comment: 8 pages, 1 figur

    Final excitation energy of fission fragments

    Full text link
    We study how the excitation energy of the fully accelerated fission fragments is built up. It is stressed that only the intrinsic excitation energy available before scission can be exchanged between the fission fragments to achieve thermal equilibrium. This is in contradiction with most models used to calculate prompt neutron emission where it is assumed that the total excitation energy of the final fragments is shared between the fragments by the condition of equal temperatures. We also study the intrinsic excitation-energy partition according to a level density description with a transition from a constant-temperature regime to a Fermi-gas regime. Complete or partial excitation-energy sorting is found at energies well above the transition energy.Comment: 8 pages, 3 figure

    The upper-atmosphere extension of the ICON general circulation model (version: Ua-icon-1.0)

    Get PDF
    How the upper-atmosphere branch of the circulation contributes to and interacts with the circulation of the middle and lower atmosphere is a research area with many open questions. Inertia-gravity waves, for instance, have moved in the focus of research as they are suspected to be key features in driving and shaping the circulation. Numerical atmospheric models are an important pillar for this research. We use the ICOsahedral Non-hydrostatic (ICON) general circulation model, which is a joint development of the Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD), and provides, e.g., local mass conservation, a flexible grid nesting option, and a non-hydrostatic dynamical core formulated on an icosahedral-triangular grid. We extended ICON to the upper atmosphere and present here the two main components of this new configuration named UA-ICON: an extension of the dynamical core from shallow- to deep-atmosphere dynamics and the implementation of an upper-atmosphere physics package. A series of idealized test cases and climatological simulations is performed in order to evaluate the upper-atmosphere extension of ICON. © Author(s) 2019
    corecore