3,362 research outputs found

    Warsaw, Town of and International Brotherhood of Teamsters Local 264

    Get PDF
    In the Matter of Impasse in Negotiations between TOWN OF WARSAW and INTERNATIONAL BROTHERHOOD OF TEAMSTERS LOCAL 264 (WARSAW HIGHWAY DEPARTMENT). PERB Case M2006-282. Edward A. Schmidt, Fact Finder

    TWO NEW SHORT-PERIOD CEPHEIDS

    Get PDF
    The General Catalogue of Variable Stars gives periods of slightly less than three-quarters of a day for the stars NO Cas and CN Tau. However, new photometry demonstrates that their periods are actually 2.6 and 1.8 days, respectively, and they are thus classical Cepheids. Fourier decompositions of their light curves are performed, and they are found to be members of a class of Cepheids with periods less than three days which may be related to the s-Cepheids. These two stars represent the shortest and longest known members of this class and thus are very useful in defining its properties in the Fourier diagrams

    Reconciliation of the Surface Brightness Fluctuations and Type Ia Supernovae Distance Scales

    Get PDF
    We present Hubble Space Telescope measurements of surface brightness fluctuations (SBF) distances to early-type galaxies that have hosted Type Ia supernovae (SNIa). The agreement in the relative SBF and SNIa multicolor light curve shape and delta-m_15 distances is excellent. There is no systematic scale error with distance, and previous work has shown that SBF and SNIa give consistent ties to the Hubble flow. However, we confirm a systematic offset of about 0.25 mag in the distance zero points of the two methods, and we trace this offset to their respective Cepheid calibrations. SBF has in the past been calibrated with Cepheid distances from the H_0 Key Project team, while SNIa have been calibrated with Cepheid distances from the team composed of Sandage, Saha, and collaborators. When the two methods are calibrated in a consistent way, their distances are in superb agreement. Until the conflict over the ``long'' and ``short'' extragalactic Cepheid distances among many galaxies is resolved, we cannot definitively constrain the Hubble constant to better than about 10%, even leaving aside the additional uncertainty in the distance to the Large Magellanic Cloud, common to both Cepheid scales. However, recent theoretical SBF predictions from stellar population models favor the Key Project Cepheid scale, while the theoretical SNIa calibration lies between the long and short scales. In addition, while the current SBF distance to M31/M32 is in good agreement with the RR Lyrae and red giant branch distances, calibrating SBF with the longer Cepheid scale would introduce a 0.3 mag offset with respect to the RR Lyrae scale.Comment: 13 pages, 3 PostScript figures, LaTeX with AASTeX 5.02 and natbib.sty v7.0 (included). Accepted for publication in The Astrophysical Journa

    Experimental study of ultracold neutron production in pressurized superfluid helium

    Get PDF
    We have investigated experimentally the pressure dependence of the production of ultracold neutrons (UCN) in superfluid helium in the range from saturated vapor pressure to 20bar. A neutron velocity selector allowed the separation of underlying single-phonon and multiphonon pro- cesses by varying the incident cold neutron (CN) wavelength in the range from 3.5 to 10{\AA}. The predicted pressure dependence of UCN production derived from inelastic neutron scattering data was confirmed for the single-phonon excitation. For multiphonon based UCN production we found no significant dependence on pressure whereas calculations from inelastic neutron scattering data predict an increase of 43(6)% at 20bar relative to saturated vapor pressure. From our data we conclude that applying pressure to superfluid helium does not increase the overall UCN production rate at a typical CN guide.Comment: 18 pages, 8 figures Version accepted for publication in PR

    PromoterPlot: a graphical display of promoter similarities by pattern recognition

    Get PDF
    PromoterPlot (http://promoterplot.fmi.ch) is a web-based tool for simplifying the display and processing of transcription factor searches using either the commercial or free TransFac distributions. The input sequence is a TransFac search (public version) or FASTA/Affymetrix IDs (local install). It uses an intuitive pattern recognition algorithm for finding similarities between groups of promoters by dividing transcription factor predictions into conserved triplet models. To minimize the number of false-positive models, it can optionally exclude factors that are known to be unexpressed or inactive in the cells being studied based on microarray or proteomic expression data. The program will also estimate the likelihood of finding a pattern by chance based on the frequency observed in a control set of mammalian promoters we obtained from Genomatix. The results are stored as an interactive SVG web page on our serve

    PromoterPlot: a graphical display of promoter similarities by pattern recognition

    Get PDF
    PromoterPlot () is a web-based tool for simplifying the display and processing of transcription factor searches using either the commercial or free TransFac distributions. The input sequence is a TransFac search (public version) or FASTA/Affymetrix IDs (local install). It uses an intuitive pattern recognition algorithm for finding similarities between groups of promoters by dividing transcription factor predictions into conserved triplet models. To minimize the number of false-positive models, it can optionally exclude factors that are known to be unexpressed or inactive in the cells being studied based on microarray or proteomic expression data. The program will also estimate the likelihood of finding a pattern by chance based on the frequency observed in a control set of mammalian promoters we obtained from Genomatix. The results are stored as an interactive SVG web page on our server

    M32+/-1

    Get PDF
    WFPC-2 images are used to study the central structure of M31, M32, and M33. The dimmer peak, P2, of the M31 double nucleus is centered on the bulge to 0.1", implying that it is the dynamical center of M31. P2 contains a compact source discovered by King et al. (1995) at 1700 A. This source is resolved, with r_{1/2} approx0.2 pc. It dominates the nucleus at 3000 A, and is consistent with late B-early A stars. This probable cluster may consist of young stars and be an older version of the cluster of hot stars at the center of the Milky Way, or it may consist of heavier stars built up from collisions in a possible cold disk of stars orbiting P2. In M32, the central cusp rises into the HST limit with gamma approx0.5, and the central density rho_0>10^7M_sol pc^-3. The V-I and U-V color profiles are flat, and there is no sign of an inner disk, dust, or any other structure. This total lack of features seems at variance with a nominal stellar collision time of 2 X 10^10 yr, which implies that a significant fraction of the light in the central pixel should come from blue stragglers. InM33, the nucleus has an extremely steep gamma=1.49 power-law profile for 0.05"<r<0.2" that becomes shallower as the HST resolution limit is approached. The profile for r<0.04" has either a gamma approx 0.8 cusp or a small core with r_c ~<0.13 pc. The central density is rho_0 > 2 10^6M_sol pc^-3, and the implied relaxation time is only ~3 X 10^6 yr, indicating that the nucleus is highly relaxed. The accompanying short collision time of 7 X 10^9 yr predicts a central blue straggler component quantitatively consistent with the strong V-I and B-R color gradients seen with HST and from the ground.Comment: 44 pages, 22 figures (7 as separate JPEG images), submitted to The Astronomical Journal. Full postscript image available at http://www.noao.edu/noao/staff/lauer/lauer_paper

    "Hidden" Seyfert 2 Galaxies and the X-ray Background

    Get PDF
    Obscured active galactic nuclei, which are classified optically as type 2 (narrow-line) Seyfert galaxies in the local universe, are by far the most promising candidates for the origin of the hard (2-10 keV) X-ray background radiation. However, optical follow-up observations of faint X-ray sources in deep Chandra images have revealed surprising numbers of apparently normal galaxies at modest redshift. Such objects represent ~40-60% of the sources classified in deep Chandra surveys, raising the possibility that the X-ray galaxy population has evolved with cosmic time. Alternatively, most of the faint X-ray galaxies in question are so distant that their angular diameters are comparable to the slit widths used in ground-based spectroscopic observations; thus, their nuclear spectral features may be overwhelmed (``hidden'') by host-galaxy light. To test this hypothesis, we have obtained integrated spectra of a sample of nearby, well-studied Seyfert 2 galaxies. The data, which accurately simulate observations of distant Chandra sources, demonstrate convincingly that the defining spectral signatures of Seyfert 2s can be hidden by light from their host galaxies. In fact, 60% of the observed objects would not be classified as Seyfert 2s on the basis of their integrated spectra, similar to the fraction of faint X-ray sources identified with ``normal'' galaxies. Thus, the numbers of narrow-line active galaxies in deep Chandra surveys (and perhaps all ground-based spectroscopic surveys of distant galaxies) are likely to have been underestimated.Comment: 9 pages, including 1 figure. To appear in ApJ Letter

    A Composite Seyfert 2 X-ray Spectrum: Implications for the Origin of the Cosmic X-ray Background

    Get PDF
    We present a composite 1-10 keV Seyfert 2 X-ray spectrum, derived from ASCA observations of a distance-limited sample of nearby galaxies. All 29 observed objects were detected. Above ~3 keV, the composite spectrum is inverted, confirming that Seyfert 2 galaxies as a class have the spectral properties necessary to explain the flat shape of the cosmic X-ray background spectrum. Integrating the composite spectrum over redshift, we find that the total emission from Seyfert 2 galaxies, combined with the expected contribution from unabsorbed type 1 objects, provides an excellent match to the spectrum and intensity of the hard X-ray background. The principal uncertainty in this procedure is the cosmic evolution of the Seyfert 2 X-ray luminosity function. Separate composite spectra for objects in our sample with and without polarized broad optical emission lines are also presented.Comment: 11 pages (AASTeX), including 3 figures. Accepted for publication in ApJ Letter

    Ultra-Slow Light and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas

    Full text link
    We report the observation of small group velocities of order 90 meters per second, and large group delays of greater than 0.26 ms, in an optically dense hot rubidium gas (~360 K). Media of this kind yield strong nonlinear interactions between very weak optical fields, and very sharp spectral features. The result is in agreement with previous studies on nonlinear spectroscopy of dense coherent media
    • 

    corecore